Skip to main content

Multiple-Valued Logic Synthesis and Optimization

  • Chapter
Logic Synthesis and Verification

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 654))

Abstract

Some Boolean logic problems can be solved more efficiently in multiple-valued domain. This chapter covers a part of the theory of multiple-valued logic related to applications in CAD. Basic methods for representation and optimization of multiple-valued functions are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Ashenhurst, “The decomposition of switching functions,” in Proc. Int. Symp. Theory of Switching, Vol. 29, Part. I, pp. 74–116. 1959.

    Google Scholar 

  2. I. Ben Dhaou, E. Dubrova and H. Tenhunen 2001 “Power efficient inter-module communication for digit-serial architectures in deep-submicron technology,” in Proc. 31st Int. Symp. Multiple-Valued Logic, pp. 61–67, May 2001.

    Chapter  Google Scholar 

  3. R. K. Brayton and S. P. Khatri “Multi-valued logic synthesis,” in Proc. 12th Int. Conf. on VLSI Design, pp. 196–206, Jan. 1999.

    Google Scholar 

  4. J. T. Butler (ed), Multiple-valued logic in VLSI, California, IEEE Computer Society, 1991.

    Google Scholar 

  5. J. T. Butler, “Multiple-valued logic,” IEEE Potentials, Vol. 14, No. 2, pp. 11–14, April–May 1995.

    Article  Google Scholar 

  6. H. A. Curtis, A New Approach to the Design of Switching Circuits Van Nostrand, Princeton, 1962.

    Google Scholar 

  7. M. Davio, J.-P. Deschamps and A. Thayse, Discrete and Switching Functions, Switzerland, McGraw-Hill International Book Company, 1978.

    MATH  Google Scholar 

  8. L. Djordjevic. “Application of the Karnaugh map to the minimization of functions in ternary logic,” Automatika Theoretical Supplement, Vol. T.3, No. 1–2, pp. 35–38, Zagreb 1967.

    Google Scholar 

  9. G. W. Dueck and D. M. Miller, “Direct search minimization of multiple-valued functions,” in Proc. 18th Int. Symp. Multiple-Valued Logic, pp. 218–225, May 1988.

    Google Scholar 

  10. E. V. Dubrova, Y. Jiang and R. K. Brayton, “Minimization of multiple-valued functions in Post algebra” in Proc. of Int. Workshop on Logic Synthesis, pp. 132–138, June 2001.

    Google Scholar 

  11. E. V. Dubrova, D. B. Gurov and J. C. Muzio, “Full sensitivity and test generation for multiple-valued logic circuits,” in Proc. of 24th Int. Symp. MVL, pp. 284–289, May 1994.

    Google Scholar 

  12. E. V. Dubrova, D. B. Gurov D. B. and J. C. Muzio, “The evaluation of full sensitivity for test generation in MVL circuits,” in Proc. 25th Int. Symp. on MVL, pp. 104–109, May 1995.

    Google Scholar 

  13. E. V. Dubrova, J. C. Muzio and B. von Stengel, “Finding composition trees for multiple-valued functions,” in Proc. 27th Int. Symp. on MVL, pp. 19–26, May 1997.

    Google Scholar 

  14. E. Dubrova and H. Sack, “Probabilistic verification of multiple-valued functions,” in Proc. 30th Int. Symp. on Multiple-Valued Logic, pp. 461–466, May 2000.

    Google Scholar 

  15. E. Dubrova, “Multiple-valued logic in VLSI” Multiple-Valued Logic, An International Journal, 2001, to appear.

    Google Scholar 

  16. G. Epstein, “The lattice theory of Post algebras,” Trans. Am. Math. Soc., Vol. 95, No. 2, pp. 300–317, Feb. 1960.

    Article  MATH  Google Scholar 

  17. G. Epstein, Multiple-valued logic design: an introduction, Bristol and Philadelphia, IOP Publishing, 1993.

    Google Scholar 

  18. G.C. Files and M. Perkowski, “New multivalued functional decomposition algorithm based on MDDs,” IEEE Trans. on CAD/ICAS, Vol. CAD-14, No. 9, pp. 1081–1086, Sept. 2000.

    Google Scholar 

  19. M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, S. Sinha and R. Brayton, “MVSIS,” in Proc. Int. Workshop on Logic Synthesis, pp. 138–144, June 2001.

    Google Scholar 

  20. T. Hanyu, “Challenge of a multiple-valued technology in recent deep-submicron VLSI,” in Proc. 31st Int. Symp. on Multiple-Valued Logic, pp. 241–247, May 2001.

    Chapter  Google Scholar 

  21. T. Hanyu and M. Kameyama, “A 200 MHz pipelined multiplier using 1.5 V-supply multiple-valued MOS current-mode circuits with dual-rail source-coupled logic,” IEEE Journal of Solid-State Circuits, Vol. 30, No. 11, pp. 1239–1245, Nov. 1995.

    Article  Google Scholar 

  22. L. S. Hsu, H. H. Teh, S. C. Chan and K. F. Loe “Multi-valued neural logic networks,” in Proc. 20th Int. Symp. Multiple-Valued Logic, pp. 426–432, May 1990.

    Google Scholar 

  23. S. L. Hurst, “A survey: developments in optoelectronics and its applicability to the multiple-valued logic,” in Proc. 16th Int. Symp. Multiple-Valued Logic, pp. 2179–2188, May 1980.

    Google Scholar 

  24. S. L. Hurst, “Multiple-Valued Logic — its status and its future,” IEEE Trans. on Computers, Vol. C-33, No. 12, pp. 1160–1179, Dec. 1984.

    Article  Google Scholar 

  25. Y. Jiang and R. K. Brayton, “Don’t cares and multi-valued logic network minimization,” in Proc. Int. Conf. on Computer-Aided Design, pp. 520–526, Nov. 2000.

    Google Scholar 

  26. T. Kam, T. Villa, R. Brayton and A. Sangiovanni-Vincentelli, “Multi-valued decision diagrams: theory and applications,” Multiple-Valued Logic, An International Journal, Vol. 4, No. 1–2, pp. 9–24, 1998.

    MathSciNet  MATH  Google Scholar 

  27. M. Hiratsuka, T. Aoki and T. Higuchi, “A model of reaction-diffusion cellular automata for massively parallel molecular computing,” in Proc. 31st Int. Symp. on Multiple-Valued Logic, pp. 247–253, May 2001.

    Chapter  Google Scholar 

  28. R. M. Karp, “Functional decomposition and switching circuit design,” J. Soc. Indust. Appl. Math., Vol. 11, pp. 291–335, Nov. 1963.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Lavagno, S. Malik, R. Brayton and A. Sangiovanni-Vincentelli, “MIS-MV: optimization of multi-level logic with multiple-valued inputs,” in Proc. Int. Conf. Computer-Aided Design, pp. 560–563, Nov. 1990.

    Google Scholar 

  30. S. Liao, S. Devadas and A. Ghosh, “Boolean factorization using multiple-valued minimization,” in Proc. Int. Conf. Computer-Aided Design, pp. 606–611, Nov. 1993.

    Google Scholar 

  31. T. Luba, “Decomposition of multiple-valued functions,” in Proc. 25th Int. Symp. on MVL, pp. 256–261, May 1995.

    Google Scholar 

  32. J. Łukasiewicz, “O logice trójwartościowej,” Ruch Filozoficzny, Vol. 5, pp. 169–171, 1920.

    Google Scholar 

  33. J. J. Lou and J. A. Brzozowski, “A generalization of Shestakov’s functional decomposition method,” in Proc. Int. Symp. on Multiple-Valued Logic, pp. 66–71, May 1999.

    Google Scholar 

  34. C. Moraga, “A minimization method for 3-valued logic functions,” in Theory of Machines and Computations, ed: Paz A. and Kohavi Z., New York, Academic, pp. 363–375, 1971.

    Google Scholar 

  35. C. Moraga, “Multiple-valued threshold logic.” in Optical computing, digital and symbolic, ed: Arrathoon, New York, Dekker, pp. 161–184, 1989.

    Google Scholar 

  36. G. D. De Micheli, R. Brayton and A. Sangiovanni-Vincentelli, “Optimal state assignment for finite state machines,” IEEE Trans. on CAD/ICAS, Vol. CAD-4, No. 3, pp. 269–284, July 1985.

    Google Scholar 

  37. J. C. Muzio and D. M. Miller, “On the minimization of many-valued functions,” in Proc. 9th Int. Symp. Multiple-Valued Logic, pp. 294–299, May 1979.

    Google Scholar 

  38. J. C. Muzio and T. C. Wesselkamper, Multiple-valued switching theory, Bristol, Hilger, 1986.

    MATH  Google Scholar 

  39. E. L. Post “Introduction to a general theory of elementary propositions,” Amer. J. Math., Vol. 43, pp. 163–185, 1921.

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Ricco, G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D. Monatanari and A. Modelli, “Non-volatile multilevel memories for digital applications” in Proc. IEEE, Vol. 86, No. 12, pp. 2399–2421, Dec. 1998.

    Google Scholar 

  41. D. C. Rine (ed), Computer science and multiple-valued logic, 2nd edn, Amsterdam, North-Holland, 1984.

    MATH  Google Scholar 

  42. P. C. Rosenbloom, “Post algebras I, postulates and general theory,” Amer J. Math., Vol. 64, pp. 167–188, 1942.

    Article  MathSciNet  MATH  Google Scholar 

  43. I. G. Rosenberg, “La structure des fonctions de plusieurs variables sur un ensemble fini,” C. R. Acad. Sci. Paris, Ser. AB, Vol. 260, pp. 3817–3819, 1965.

    MATH  Google Scholar 

  44. I. G. Rosenberg, “On closed classes, basic sets and groups,” in Proc. 7th Int. Symp. Multiple-Valued Logic, pp. 1–6, May 1977.

    Google Scholar 

  45. R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization for PLA optimization,” IEEE Trans. on CAD/ICAS, Vol. CAD-5, No. 9, pp. 727–750, Sept. 1987.

    Google Scholar 

  46. T. Sasao, “Ternary decision diagrams: survey,” in Proc. 27th Int. Symp. Multiple-Valued Logic, pp. 241–250, May 1997.

    Google Scholar 

  47. T. Sasao, “Multiple-valued logic and optimization of programmable logic arrays,” IEEE Computer, Vol. 21, pp. 71–80, 1988.

    Article  Google Scholar 

  48. T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

    Google Scholar 

  49. K. Shimabukuro and C. Zukeran, “Reconfigurable current-mode multiple-valued residue arithmetic circuits,” in Proc. 28th Int. Symp. Multiple-Valued Logic, pp. 282–287, May 1998.

    Google Scholar 

  50. K. C. Smith, “The prospects for multivalued logic: A technology and applications view,” IEEE Trans. om Computers, Vol. C-30, No. 9, pp. 619–634, Sept. 1981.

    Article  Google Scholar 

  51. W. R. Smith, “Minimization of multiple-valued functions,” in Computer science and multiple-valued logic, ed: Rine, North-Holland, Amsterdam, 1984.

    Google Scholar 

  52. F. Somenzi, CUDD: CU Decision Diagram Package, Release 2.3.0, University of Colorado at Boulder, 1998.

    Google Scholar 

  53. The VIS Group, “VIS: A system for Verification and Synthesis,” in Proc. 8th Int. Conf. on Computer Aided Verification, Springer Lecture Notes in Computer Science, ed: Alur and Henzinger, Vol. 1102, New Brunswick, NJ, pp. 428–432, 1996.

    Google Scholar 

  54. B. von Stengel, Eine Dekompositionstheorie für mehrstellige Funktionen Mathematical Systems in Economics, Vol. 123, Anton Hain, Frankfurt, 1991.

    Google Scholar 

  55. H. M. Wang, C. L. Lee and J. E. Chen, “Factorization of Multiple-Valued Functions,” 25th Int. Symp. on Multiple-Valued Logic, pp. 164–169, May 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubrova, E. (2002). Multiple-Valued Logic Synthesis and Optimization. In: Hassoun, S., Sasao, T. (eds) Logic Synthesis and Verification. The Springer International Series in Engineering and Computer Science, vol 654. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0817-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0817-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5253-2

  • Online ISBN: 978-1-4615-0817-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics