Skip to main content

Abstract

The lignin present in plant tissues is referred to as native or natural lignin. During the industrial delignification of lignocellulosic materials such as wood, lignin undergoes significant structural changes; so the lignins obtained under industrial conditions, the so-called technical lignins, are not identical with the native ones in their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Barlow, Polymer blends for engineering applications, Anales de la Asociacion Quimica Argentina 84(1). 87–93 (1996).

    CAS  Google Scholar 

  2. X. Cao, M. Jiang, and T. Yu, Controlable specific interaction and miscibility in polymer blends; hydrogen bonding and morphology, Makromol. Chem.190, 117–128 (1989).

    Article  CAS  Google Scholar 

  3. H. A. Schneider, The Gordon-Taylor equation. Additivity and interaction in compatible polymer blends, Makromol Chem. 189, 1941–1955 (1988).

    Article  CAS  Google Scholar 

  4. K. A. Solen and M. C. Kuchar, Chemical compatibility of polymeric materials, Chem.Eng.Edu. (Spring), 94–98 (1990).

    Google Scholar 

  5. M. Ratzsh and G. Handel, Interactions between polymers, Makromol. Chem. Macromol. Symp. 38, 81–98 (1990).

    Article  Google Scholar 

  6. N. C. Liu and W. E. Baker, Reactive polymers for blend compatibilization, Ad. Polym. Technol 11(4), 249–262 (1992).

    Article  CAS  Google Scholar 

  7. A. Simmons and A. Eisenberg, Miscibility enhancement in ionomeric blends, Polym. Prepr. (ACS Div. Polym. Chem) 27(1), 341 (1986).

    CAS  Google Scholar 

  8. J. M. Rodriguez-Parada and V. Percec, Interchain electron-donor-acceptor complexes - a model to study polymer-polymer miscibility, Macromolecules 19, 55–64 (1986).

    Article  CAS  Google Scholar 

  9. J. M. G. Cowie and C. Love, The use of molecular recognition to obtain selective blending in polymer systems, Polym. 42, 4783–4789 (2001).

    Article  CAS  Google Scholar 

  10. E. Roffael and B. Dix, Lignin and lignosulfonate in non-conventional bonding - an overview, Holz als Roh -und Werkstoff 49, 199–205 (1991).

    Article  CAS  Google Scholar 

  11. A. Pizzi, F-A. Cameron, and G. H. van der Klashorst, Soda bagasse lignin adhesives for particle board, in: Adhesives from Renewable Resources, edited by R. W. Hemingway, A. H. Conner, and S. J. Branham (ACS Symposium Series 385, Washington, 1987), pp. 82–95.

    Google Scholar 

  12. M. J. de A. Pimenta and E. Frollini, Lignin utilization as “macromonomer” in the synthesis of phenolic type resins, Anais. Assoc. Bras. Quim. 46(1), 43–49, (1997).

    CAS  Google Scholar 

  13. S. A. Mikhanov, V. M. Golubev, and E. S. Bilimova, Use of lignin in the production of phenol-formaldehyde foam plastic, Intl. Polym. Sci. Technol 14(6), 74 (1987).

    Google Scholar 

  14. P. M. Cook and T. Sellers Jr., Organosoly lignin-modified phenolic resin, in: Lignin, Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 324–333.

    Chapter  Google Scholar 

  15. A. L. Wooten, T. Sellers Jr., and P. M. Tahir, Reaction of formaldehyde with lignin, For. Prod. J. 38(6), 45–46 (1988).

    CAS  Google Scholar 

  16. H. Pecina, G. Kuhne, Z. Bemaczyk, and O. Wienhaus, Lignin-Phenol-Bindemittel fur die Holzwerkstoffherstellung, Holz als Roh-and Werkstoff 49, 391–397 (1991).

    Article  CAS  Google Scholar 

  17. H. Pecina, G. Kuhne, Z. Bemaczyk, and O. Wienhaus, Lignin-Phenol-Bindmittel fur die Holzwerkstoffherstelung Holz als Roh-and Werkstoff 50, 407–409 (1992).

    Article  CAS  Google Scholar 

  18. D. J. Gardner and G. D. McGinnis, Comparison of the reaction rates of the alkali-catalyzed addition of formaldehyde to phenol and selected lignins, J. Wood Chem. Technol. 8(2), 261–288 (1988).

    Article  CAS  Google Scholar 

  19. R. E. Ysbrandy, R. D. Sanderson, and G. F. R. Gerisher, DSC thermal analysis of phenol and phenol-lignin extended resols and their physical behaviour in paper laminates, Das Papier 46(2), 62–67 (1991).

    Google Scholar 

  20. A. Y. Kharade and D. D. Kale, Effect of lignin on phenolic novolak resins and molding powder, Eur. Polym. J. 34(2), 201–205 (1998).

    Article  CAS  Google Scholar 

  21. R. S. G. Piccolo, F. Santos, and E. Frollini, Sugar cane bagasse lignin in resol-type resin: alternative application for lignin-phenol-formaldehyde resins, J. Macromol. Sci. Pure. Appl. Chem. A 34(1), 153–164 (1997).

    Article  Google Scholar 

  22. P. Benar and U. Schuchardt, Organosolv lignins from sugar cane bagasse as component in resols, Fifth European Workshop on Lignocellulosics and Pulp (Aveiro Portugal, August 30 - September 2, 1998), pp. 45–48.

    Google Scholar 

  23. P. Benar, A. G. Goncavles, D. Mandelli, and U. Shuchardt, Eucalyptus organosolv lignins: study of the hydroxymethylation and use of resols, Bioresource Technol. 68,11–16, (1999).

    Article  CAS  Google Scholar 

  24. H. K. Ono and K. Sudo, Wood adhesives from phenolysis lignin. A way to use lignin from steam-explosion process, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 334–346.

    Chapter  Google Scholar 

  25. P. C. Muller and W. G. Glasser, Engineering plastics from lignin, VIII. Phenolic resin, Prepolymer synthesis and analysis, J. Adhesion 17,157–174 (1984).

    Article  CAS  Google Scholar 

  26. P. C. Muller, S. S. Kelly, and W. G. Glasser, Engineering plastics from lignin, IX. Phenolic resin, synthesis and analysis, J. Adhesion 17, 185–206, (1984).

    Article  CAS  Google Scholar 

  27. M. Olivares, J. A. Guzman, A. Natho, and A. Saavedra, Kraft lignin utilization in adhesives, Wood Sci. Technol. 22, 157–165 (1988).

    Article  CAS  Google Scholar 

  28. A. Mathiasson and D. G. Kubat, Lignin binder in particle boards using high frequency heating. Holz als Roh-und Wekstoff 52, 9–18 (1994).

    Article  CAS  Google Scholar 

  29. W. Peng and B. Riedl, The chemorheology of phenol-formaldehyde thermoset resin and mixtures of the resin with lignin fillers, Polymer 35(6), 1280–1286 (1994).

    Article  CAS  Google Scholar 

  30. H. Pecina, Z. Bemaczyk, O. Wienhaus, and G. Kuhne, Lignin-Phenol-Bindemittel fur die Holzwerkstoffherstellung, Die Reaktivitat von Lignin-Phenol-Bindemitteln, Holz als Roh-and Werkstoff 52(1), 1–5 (1994).

    Article  CAS  Google Scholar 

  31. N. Shiraishi, Recent progress in wood dissolution and adhesives from Kraft lignin, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 488–495.

    Chapter  Google Scholar 

  32. W. L. S. Nieh and W. G. Glasser, Lignin epoxide: synthesis and characterization, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series, 397, Washington, 1989), pp.506–514.

    Chapter  Google Scholar 

  33. B. Tomita, K. Kurozomi, A. Takemura, and S. Hosoya, Ozonide lignin-epoxy resins; synthesis and use, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 496–505.

    Chapter  Google Scholar 

  34. D. Feldman and D. Banu, Kinetic data on the curing of an epoxy polymer in the presence of lignin, J. Polym. Sci. 26(4), 973–983 (1988).

    CAS  Google Scholar 

  35. D. Feldman and M. Khoury, Epoxy-lignin polyblends II: Mechanical behavior and weathering, J. Adhesion Sci. Technol. 2(2), 107–116 (1988).

    Article  CAS  Google Scholar 

  36. D. Feldman, D. Banu and M. Khoury, Epoxy-lignin polyblends III: Thermal properties and infrared analysis, J. Appl. Polym. Sci. 37, 877–887 (1989).

    Article  CAS  Google Scholar 

  37. J. Wang and D. Feldman, Effects of organo-silanes on the adhesive properties of epoxy-lignin polyblends, J. Adhesive Sci. Technol. 5(7), 565–577 (1991).

    Article  CAS  Google Scholar 

  38. J. Wang, D. Banu and D. Feldman, Epoxy-lignin polyblends: effects of various components on adhesive properties, J. Adhesive Sci. Technol. 6(5), 587–598 (1992).

    Article  CAS  Google Scholar 

  39. D. Feldman, D. Banu, A. Natansohn, and J. Wang, Structure-properties relations of thermally cured epoxy-lignin polyblends, J. Appl. Polym. Sci. 42,1537–1550 (1991).

    Article  CAS  Google Scholar 

  40. D. Feldman, D. Banu, M. Lacasse, J. Wang, and C. Luchian, Lignin and its polyblends, J. Macromol Sci. Pure Applied Chem. A 32(849), 1613–1619 (1995).

    Article  Google Scholar 

  41. H. Ito and N. Shiraishi, Epoxy resin adhesives from thiolignin, Mokuzay Gakkaishi 33(5), 393–399 (1987).

    CAS  Google Scholar 

  42. D. Feldman and A. Baskaran, The effect of adding lignin to poly(dimethyl-siloxane) - poly(vinyl chloride) blends, J. Adhesion 27, 231–243 (1989).

    Article  CAS  Google Scholar 

  43. D. Feldman, M. Lacasse, and D. Banu, Contribution to the modification of an acrylic sealant with lignin, J. Polym. Mater. 5, 131–139 (1988).

    CAS  Google Scholar 

  44. W. G. Glasser, C. Barnett, T. Rials, and S. Kelley, Synthesis and characterization of several different hydroxyalkyl lignin derivatives, Proc. Int. Symp. Wood Pulping Chem. (Tsukuba, Japan) 3, 89–94 (1983).

    Google Scholar 

  45. W. G. Glasser, C. A. Barnett, T. G. Rials, and V. P. Saraf, Engineering plastics from lignin II: characterization of hydroxyalkyl lignin derivatives, J Appl. Polym. Sci. 29,1815–1830 (1984).

    Article  CAS  Google Scholar 

  46. V. P. Saraf and W. G. Glasser, Engineering plastics from lignin III: Structure-property relationships in solution cast polyurethane films, J Appl. Polym. Sci. 29, 1831–1841 (1984).

    Article  CAS  Google Scholar 

  47. T. G. Rials and W. G. Glasser, Engineering plastics from lignin IV: Effects of cross-link density on polyurethane film properties - variations in NCO:OH ratio,Holzforcshung 38(4), 191–199 (1984).

    Article  CAS  Google Scholar 

  48. A. Natansohn, M. Lacasse, D. Banu, and D. Feldman, CP-Mass NMR spectra of polyurethane - lignin blends, J. Appl. Polym. Sci. 40, 899–904 (1989).

    Article  Google Scholar 

  49. D. Feldman and M. Lacasse, Polymer-filler interaction in polyurethane - Kraft lignin polyblends, J Appl. Polym. Sci. 51, 701–709 (1994).

    Article  CAS  Google Scholar 

  50. D. Feldman, M. Lacasse. and R. St. J. Manley, Polyurethane based sealant modified by blending with Kraft lignin, J. Appl. Polym. Sci. 35, 247–257 (1988).

    Article  CAS  Google Scholar 

  51. D. Feldman and M. Lacasse, Swelling characteristics of lignin filled polyurethane sealant, J Adhesion Sci. Technol. 8(5), 472–484 (1994).

    Google Scholar 

  52. D. Feldman and M. Lacasse, Mechanical characteristics of sealants based on polyurethane - lignin polyblends, J. Adhesion Sci. Technol. 8(9), 957–969 (1994).

    Article  CAS  Google Scholar 

  53. D. Feldman, C. Luchian, D. Banu, and M. Lacasse, Polyurethane - maleic anhydride grafted lignin polyblends, Cellulose Chem. Technol. 25, 163–180 (1991).

    CAS  Google Scholar 

  54. D. V. Evtuguin, J. P. Andreolety, and A. Gandini, Polyurethanes based on oxygen organosolv lignin, Eur. Polym. J 34(8), 1163–1169 (1998).

    Article  CAS  Google Scholar 

  55. E. G. Lyubeshkina, Lignins as components of polymeric composite materials, Russian Chem. Rev. 52(7), 1196–1224 (1983).

    Article  CAS  Google Scholar 

  56. C. I. Simionescu, M. M. Macoveanu, C. Vasile, F. Ciobanu, M. Esanu, A.I oanid, P. Vidrascu, and N. Buruntea, Polyolefins/lignosulfonates blends, Cellulose Chem. Technol. 30, 411–420 (1996).

    CAS  Google Scholar 

  57. C. Vasile, M. Downey, B. Wong, M. M. Macoveanu, M. Pascu, J. H. Choi, C. Sung, and W. Baker, Isotactic polypropylene/epoxy -modified lignin blends, Cellulose Chem. Technol. 32, 61–88 (1998).

    CAS  Google Scholar 

  58. H. Levon, J. Huhtala, B. Malm, and J. J. Lindberg, Improvement of the thermal stabilization of polyethylene with lignosulphonate, Polymer 28(April), 745–750 (1987).

    Article  CAS  Google Scholar 

  59. S. Casenave, A. Ait-Kadi, and B. Riedl, Mechanical behavior of highly filled lignin - polyethylene composites made by catalytic grafting, Can. J. Chem. Eng. 74(April), 308–315 (1996).

    Article  CAS  Google Scholar 

  60. V. Demianova and B. Kosikova, Lignin utilization in polyolefin blends, in: Lignocellulosics Science, Technology,Development and Use, edited by J. F. Kennedy, G. O. Phillips, and P. A. Williams (Elis Hardwood, Chichester, 1992) pp. 827–831.

    Google Scholar 

  61. B. Kosikova, M. Kacurakova, and V. Demianova, Photooxidation of the composite lignin/polypropylene films, Chem. Papers 42(2), 132–136 (1993).

    Google Scholar 

  62. B. Kosikova, V. Demianova, and M. Kacurakova, Sulfur-free lignins as composites of polypropylene films, J. Appl. Polym. Sci. 47, 1065–1073 (1993).

    Article  CAS  Google Scholar 

  63. J. Kubat and H. E. Stromvall, Properties of injection molded lignin-filled polyethylene and polystyrene, Plast. Rubber Process. Appl. 3, 111–118 (1983).

    CAS  Google Scholar 

  64. I. Chodak, R. Brezny, and L. Rychla, Blends of polypropylene with lignin. I: Influence of a lignin addition on cross-linking and thermooxidation stability of polypropylene, Chem. Papers 40(4), 461–470 (1986).

    CAS  Google Scholar 

  65. J. Rosch and R. Mulhaupt, Mechanical properties of organosoly - lignin filled thermoplastics, Polym. Bulletin 32, 361–365 (1994).

    Article  Google Scholar 

  66. H. D. Rozman, K. W. Tan, R. N. Kumar, A. Abubakar, Z. A. M. Ishak, and H. Ismail, The effect of lignin as a compatibilizer on the physical properties of coconut fiber - polypropylene composites, Eur.Polym. J. 36(7), 1483–1494 (2000).

    Article  CAS  Google Scholar 

  67. H. G. Hofmann, Polymer blend modification of PVC in: Polymer Blends and Mixtures, edited by D. J. Walsh, J. S. Higgins and A. Maconnachie (Martinus Nijhoff, Dordrecht, 1985) pp. 117–118.

    Chapter  Google Scholar 

  68. D. Feldman, D. Banu, and S. El-Raghi, Poly(vinyl chloride) - lignin blends for outdoor application in building. J. Macromol. Sci. Pure Appl. Chem. A 31(5), 555–571 (1994).

    Google Scholar 

  69. D. Feldman, D. Banu, J. Lora and S. El-Raghi, Rigid poly(vinyl chloride) - organosolv lignin blends for applications in building, J. Appl. Polym. Sci. 61, 2119–2128 (1996).

    Article  CAS  Google Scholar 

  70. D. Feldman and D. Banu, Contribution to the study of rigid PVC polyblends with different lignins, J. Appl. Polym. Sci. 66, 1731–1744 (1997).

    Article  CAS  Google Scholar 

  71. D. Feldman, D. Banu, J. Campanelli, and H. Zhu, PVC-plasticized lignin polyblends, Poly Millennial 2000 International Conference (Waikoloa, Hawaii), December 9–13, 2000.

    Google Scholar 

  72. E. P. Galimov, V. P. Dmitriev, and R. K. Nizamov, Film materials based on PVC and hydrolysis lignin, Intern. Polym. Sci. Technol. 18(8), 55–56 (1991).

    Google Scholar 

  73. Y. Li, J. Milnar, and S. Sarkanen, The first 85% Kraft lignin - based thermoplastics, J. Polym. Sci. Part B, Polym. Physics 35, 1899–1910 (1997).

    Article  CAS  Google Scholar 

  74. Y. Li and S. Sarkanen, Thermoplastics with very high lignin contents, in: Lignin: Historical, Biological,and Materials Perspectives, edited by W. G. Glasser, R. A. Northey and T. P. Schultz (ACS Symposium Series 742, Washington, 2000) pp. 351–366.

    Google Scholar 

  75. T. G. Rials and W. G. Glasser, Multiphase materials with lignin. IV Blends of Hydroxypropyl cellulose with lignin, J. Appl. Polym. Sci. 37, 2399–2415 (1989).

    Article  CAS  Google Scholar 

  76. I. Ghosh, R. K. Jain, and W. G. Glasser, Blends of biodegradable thermoplastics with lignin esters, in: Lignin: Historical,Biological and Materials Perspectives, edited by W. G. Glasser, R. A. Northey, and T. P. Schultz (ACS Symposium Series 742, Washington, 2000) pp. 331–350.

    Google Scholar 

  77. S. Baumberger, C. Lapierre, B. Monties, D. Lourdin and P. Colonna, Preparation and properties of thermally molded and cast lignosulfonates - starch blends, Ind. Crop. Prod. 6, 253–258 (1997).

    Article  CAS  Google Scholar 

  78. S. Baumberger, C. Lapierre, B. Monties, and G. Della Valle, Use of Kraft lignin as filler for starch film, Polym. Degrad. Stab. 59, 273–277 (1998).

    Article  CAS  Google Scholar 

  79. E. Corradini, E. A. G. Pineda, and A. A. W. Hechenleitner, Lignin - poly(vinyl alcohol) blends studied by thermal analysis, Polym. Degrad. Stab. 66(2), 199–208 (1999).

    Article  CAS  Google Scholar 

  80. Z. X. Guo, A. Gandini, and F. Pla, Polyesters from lignin. 1. The reaction of Kraft lignin with dicarboxylic acid chlorides, Polym. Intern. 27, 17–22 (1992).

    Article  CAS  Google Scholar 

  81. Z. X. Guo and A. Gandini, Polyesters from lignin. 2. The copolyesterification of Kraft lignin and polyethylene glycols with dicarboxylic acid clhorides, Eur. Polym. J. 27(11), 177–1180 (1991).

    Article  Google Scholar 

  82. O. Faix, New aspects of lignin utilization in large amounts, Das Papier 12, 733–739 (1992).

    Google Scholar 

  83. B. B. Boonstra, Fillers: carbon black and non black, in: Rubber Technology, 2 nd Edition, edited by M. Morton (Van Nostrand Reinhold Co., New York, 1973), p. 54.

    Google Scholar 

  84. B. B. Boonstra, Reinforcement by fillers, in: Rubber Technology and Manufacture 2 nd Edition, edited by C. M. Blow and C. Hepburn (Butterworths, London, 1982), p. 269.

    Google Scholar 

  85. M.A. De Paoli and L. T. Furlan, Sugar cane bagasse lignin as a stabilizer for rubbers: Part H - butadiene rubber, Polym. Degrad. Stab. 13, 129–138 (1985).

    Article  Google Scholar 

  86. Y. G. Kuzmina, The Manufacture and Applications of Filled Compositions Based on Styrene-Polyolefin Copolymers (Niitekhim Publisher, Moscow, 1977), p. 43.

    Google Scholar 

  87. D. N. Simmons, Non black fillers and colouring materials, in: Rubber Technology and Manufacture 2 nd Edition, edited by C. M. Blow and C. Hepburn (Butterworths, London, 1982) p. 219.

    Google Scholar 

  88. S. I. Falkehag, Lignin in materials, Applied Polymer Symposium 28, 247–257 (1975).

    CAS  Google Scholar 

  89. J. J. Lindberg, T. A. Kuusela, and K. Levon, Specialty Polymers from Lignin,in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 190–204.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, D. (2002). Lignin and Its Polyblends — A Review. In: Hu, T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0643-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5173-3

  • Online ISBN: 978-1-4615-0643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics