Skip to main content

Abstract

The increasing need for environmental protection together with the concerns over the future availability of petrochemical feedstock have led to the design and development of new degradable thermoplastic materials, based on renewable resources that are more friendly to the environment than the conventially used petroleum-based plastics (Chapman, 1994; Fritz et al., 1995; Chiellini and Solaro, 1996; Krochta and De Mulder-Johnston, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumberger, S., Lapierre, C., Monties, B., Lourdin, D., and Colonna, B., 1997, Preparation and properties of thermally moulded and cast lignosulfonates-starch blends, Ind. Crops. Prod. 6: 253–258.

    Article  CAS  Google Scholar 

  • Baumberger, S., Lapierre, C., and Monties, B., 1998a, Utilization of pine kraft lignin in starch composites: impact of structural heterogeneity, J. Agric. Food Chem. 46: 2234–2240.

    Article  CAS  Google Scholar 

  • Baumberger, S., Lapierre, C., Monties, B., and Della Valle, G., 1998b, Use of kraft lignin as filler for starch films, Polym. Degrad. Stab. 59: 273–277.

    Article  CAS  Google Scholar 

  • Baumberger, S., 1999, Obtention et caractérisation de matériaux composites amidon-lignines, Ph.D. thesis, Institut National Agronomique (France).

    Google Scholar 

  • Baumberger, S., Lapierre, C., Lora, J. H., and Monties, B, 1999, Novel utilization of wheat straw organosolv lignins in starch composites, Proceedings of the 1O th Int. Symp. Wood Pulp. Chem., Yokohama (Japan), Vol I, p. 680.

    Google Scholar 

  • Baumberger, S., Michon, C., Cuvelier, G., and Lapierre, C., 2000, Lignin utilization in starch thermoplastics: towards molecular origin of polymer compatibility, Proceedings of the 6 th Europ. Workshop Lignocell. Pulps, Bordeaux (France), p. 121.

    Google Scholar 

  • Bengs, H., 1998, Germain patent n°W09902596

    Google Scholar 

  • Callegarin, F., Gallo, J-A Q., Debeaufort, F., and Voilley, A., 1997, Lipids and biopackaging, JAOCS, 74(10): 1183–1192.

    Article  CAS  Google Scholar 

  • Chang, Y. P., Cheah, P. B., and Seow, C. C., 2000, Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state, J. Food Sci. 65(3): 445–451.

    Article  CAS  Google Scholar 

  • Chapman, G. M., 1994, Status of technology and applications of degradable products, in: Polymers from Agricultural Coproducts, M. L. Fishman, R. B. Friedman and S. J. Huang, ed., ACS, Washington, pp. 29–47.

    Chapter  Google Scholar 

  • Chiellini, E. and Solaro, R., 1996, Biodegradable polymeric materials, Adv. Mater. 8(4): 305–313.

    Article  CAS  Google Scholar 

  • Doane, W. M, 1992, USDA Research on starch-based biodegradable plastics, Starch/Stärke, 44: 293–295.

    Article  CAS  Google Scholar 

  • Fang, Q. and Hanna, M. A., 2000, Functionnal properties of polylactic acid starch-based loose-fill packagingfoams, Cereal Chem. 77(6): 779–783.

    Article  CAS  Google Scholar 

  • Fengel, D. and Wegener, G., 1989, Wood: Chemistry, Ultrastructure,Reactions. Walter de Gruyter, Berlin, pp. 613.

    Google Scholar 

  • Fishman, M. L., Coffin, D. R., Unruh, J. J., and Ly, T., 1996. Pectin/starch/glycerol films: blends or composites? J. Mat. Sci. Pure appl. Chem. A33: 639–654.

    Article  CAS  Google Scholar 

  • Fritz, H. G., Aichholzer, W., Seidenstcker, T., and Widmann, B., 1995, Abbaubare polymerwerkstoffe auf der basis nachwachsender rohstoffe-möglichkeiten und grenzen, Starch/stärke 47: 475–491.

    Article  CAS  Google Scholar 

  • Funke, U. and Lindhauer, G, 1994, Eigenschaften von Gießfilmen aus nativen und chemisch modifizierten Starken, Starch/stärke 46: 384–388.

    Article  CAS  Google Scholar 

  • Garcia, M. A., Martino, M. N., and Zaritzky, N. E., 2000, Lipid addition to improve barrier properties of edible starch-based films and coatings, J. Food Sci. 65(6): 941–947.

    Article  CAS  Google Scholar 

  • Hanggi, U. J., 1995, Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods, FEMS Microbiology Reviews 16: 213–220.

    Article  Google Scholar 

  • Jauregui, B., Munoz, M. E., and Santamaria, A., 1995, Dynamic viscoelastic properties of blends of poly(ethylene-co-vinyl acetate) and a modified starch, Macromol. Chem. Phys. 196: 3133–3142.

    Article  CAS  Google Scholar 

  • Kalichevsky, M. T. and Ring, S. G, 1987, Incompatibility of amylose and amylopectin in aqueous solution, Carbohydr. Res. 162: 323–328.

    Article  CAS  Google Scholar 

  • Ke, T. and Sun, X., 2000, Physical properties of poly(lactic) and starch composites with various blending ratios, Cereal Chem. 77(6): 761–768.

    Article  CAS  Google Scholar 

  • Kim, M. and Pometto, A. L., 1994, Food packaging potential of some novel biodegradable starch-polyethylene, J. Food Protection 57(11): 1007–1012.

    CAS  Google Scholar 

  • Kosikowa, B., Demianova, V., and Kacurakova, M., 1993, Sulfur-free lignins as composites of polypropylene films, J. Appl. Polym. Sci. 47: 1065–1073.

    Article  Google Scholar 

  • Krochta, J. M. and De Mulder-Johnston, C. L. C., 1996, Biodegradable polymers from agricultural products, in: Agricultural Materials as Renewable Resources, G. Fuller, T. A. McKeon and D. D. Bills, ed., ACS, Washington, pp. 120–140.

    Chapter  Google Scholar 

  • Leloup, V., Colonna, P., and Buléon, A., 1991, Influence of amylose amylopectin ratio on gel properties, J. Cereal Sci. 13: 1–13.

    Article  CAS  Google Scholar 

  • Lim, S.-T. and Jane, J.-L, 1993, Preparation of water-resistant, biodegradable plastics with starch-zein mixtures in: Carbohydrates and Carbohydrate Polymer, M. Yalpani, ed., ATL Press, Mount Prospect, pp. 288–297.

    Google Scholar 

  • Lourdin, D., Colonna, P., and Della Valle, G, 1995, Modes d’obtention de matériaux amylacées aux échelles laboratoire et pilote, in: Valorisations Non Alimentaires Des Grandes Productions Agricoles, J. Gueguen, ed., INRA, Nantes, pp. 241–248.

    Google Scholar 

  • Lourdin, D., Bizot, H., and Colonna, P., 1997a, Correlation between static mechanical properties of starch-glycerol materials and low-temperature relaxation, Macromol. Symp. 114: 179–185.

    Article  CAS  Google Scholar 

  • Lourdin, D., Coignard, L., Bizot, H., and Colonna, P., 1997b, Influence of equilibrium relative humidity and plasticizer content on water content and glass transition of starch materials, Polymer 38: 5401–5406.

    Article  CAS  Google Scholar 

  • Monties, B. 1988, Preparation of dioxane lignin fractions by acidolysis, in: Methods in enzymology, W. A. Wood and S. T. Kellogg, ed., Academic Press, New York, pp. 31–34.

    Google Scholar 

  • Mörck, R., Reimann, A., and Kringstad, K. P, 1988, Fractionation of kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch, Holzforschung 42: 111–116.

    Article  Google Scholar 

  • Muzzarelli, R. and Bari, P., 1994, Chitosans carrying the methoxyphenyl functions typical of lignin, Carbohydr. Polym. 23: 155–160.

    Article  CAS  Google Scholar 

  • Otey, F., Westhoff, R. P., and Doane, W. M, 1987. Starch-based blown films, Ind. Eng. Chem. Res. 26: 1659–1663.

    Article  CAS  Google Scholar 

  • Protzman, T. F., Wagoner, J. A., and Young, A. H, 1967, Process of casting amylose films, U.S. patent n° 3,344,216.

    Google Scholar 

  • Rivard, C., Moens, L., Roberts, K., Brigham, J., and Kelley, S, 1995. Starch esters as biodegradable plastics: effects of ester group chain length and degree of substitution on anaerobic biodegradation, Enzyme and Microbial Technology 17: 848–852.

    Article  CAS  Google Scholar 

  • Rutlege, D. N., Barros, A. S., Vackier, M. C., Baumberger, S., and Lapierre, C., 1999, Analysis of time domain NMR and other signals, in: Advances in Magnetic Resonance in Food Science, P. S. Belton, B. P. Hills, and G. A. Webb, ed., Royal Society of Chemistry, Cambridge, pp. 203.

    Chapter  Google Scholar 

  • van Soest, J. J. G, 1996. Starch plastics: structure-property relationships, Ph.D. thesis, Utrecht University (The Netherlands).

    Google Scholar 

  • Shogren, R. L., Swanson, C. L., and Thompson, A. R., 1992, Extrudates of cornstarch with urea and glycols: structure/mechanical property relations, Starch/Stärke 44: 335–338.

    Article  CAS  Google Scholar 

  • Simionescu, C. I., Macoveanu, M. M., Vasile, C., Ciobanu, F., Esanu, M., Ioanid, A., Vidrascu, P., and Georgescu-Buruntea, N., 1996, Polyolefins/lignosulfonates blends, Cellulose Chem. Technol. 30: 411–429.

    CAS  Google Scholar 

  • Volperts, A., Dizhbite, T., Telysheva, G., Odermatt, J., Lehnen, R., and Faix, O., 2001, Miscibility of ligninpolymer blends as detected by differential scanning calorimetry (DSC), Proceedings of the 11th Int. Symp. Wood Pulp Chem. Nice (France), p 203–206.

    Google Scholar 

  • Whistler, R. L., 1965, Fractionation of starch, in: Starch: Chemistry and Technology, R. L. Whistler and E. F. Paschall, ed., Academic Press, New York-London, pp. 331–347.

    Google Scholar 

  • Yao, Y., Yoshioka, M., and Shiraishi, N., 1995, Rigid polyurethane foams from combined liquefaction mixtures of wood and starch, Mokuzai Gakkaishi 41(7): 659–668.

    CAS  Google Scholar 

  • Yao, Y., Yoshioka, M., and Shiraishi, N., 1994, Soluble properties of liquefied biomass prepared in organic solvents, Mokuzai Gakkaishi 40(2): 176–184.

    CAS  Google Scholar 

  • Yao, Y., Yoshioka, M., and Shiraishi, N., 1993, Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent, Mokuzai Gakkaishi 39(8): 930–938.

    CAS  Google Scholar 

  • Zobel, H. F., and Stephen, A. M, 1995. Starch: structure, analysis, and application, in: Food Polysaccharides and Their Applications, A. M. Stephen, ed., Marcel Dekker, New York, pp. 19–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baumberger, S. (2002). Starch-Lignin Films. In: Hu, T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0643-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5173-3

  • Online ISBN: 978-1-4615-0643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics