Skip to main content

The Role of Metabolomics in Systems Biology

A New Vision for Drug Discovery and Development

  • Chapter
Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis

Abstract

The recent completion of major milestones of the Human Genome Project has demonstrated the impact of the “omics revolution” on modern research in the life sciences (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001). In turn, the enormous degree of complexity inherent in genomic information has revealed the limitations of purely genomic investigation. Recent research has extended to the study of the proteome, defined as the total protein complement encoded for by a genome. The enormity of this effort becomes evident when it is considered that the estimated 30,000 – 40,000 genes in the human are predicted to yield as many as 1 million distinct proteins due to processes such as transcriptional splicing and post-translational modifications. As such, proteomic analysis has stimulated dramatic technological advances for protein quantification, characterization, and identification (Gygi et al., 1999; Geng et al., 2000; Regnier et al., 2000; Barnes and Clemmer, 2001; McLuckey et al., 2001; Valentine et al., 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes CAS, Gemmer DE. Assessment of purity and screening of peptide libraries by nested ion mobility-TOFMS: identification of RNase S-protein binders Anal Chem 73: 424–433 (2001).

    Article  Google Scholar 

  • Cascante M, Boros LG, Comin-Anduix B et al., Metabolie control analysis in drug discovery and disease. Nature Biotechnol 20: 243–249 (2002).

    Article  CAS  Google Scholar 

  • Davidov E, Clish CB, Meyes M et al. Systems biology approach: parallel analysis of the ApoE3-Leiden transgenic mouse model. Nature Biotechnol submitted (2002a).

    Google Scholar 

  • Davidov E, Marple EW, Naylor S. Advancing ding discovery and development through systems biology. Drug Discov Today submitted (2002b).

    Google Scholar 

  • Dietel P, Spiteller G. Changes in the excretion of organic acids in human urine after physical exertion. J Chromatogr 378: 1–8 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Droge JBM, Rinsma WJ, van’t Klooster HA et al. An evaluation of SIMCA: Part 2-Classification of pyrolysis mass spectra of Pseudomonas and Serratia bacteria by pattern recognition using the SIMCA classifier. J Chemometrics 1: 231–241 (1987).

    Article  Google Scholar 

  • Fiehn O, Kopka J, Dormann P et al. Metabolite profiling for plant functional genomics. Nature Biotechnol 18: 1157–1161 (2000).

    Article  CAS  Google Scholar 

  • Gaspari M, Vogels J, Wulfert F et al. Novel strategies in mass spectrometric data handling. In Advances in Mass Spectrometry. Gelpi E (Ed) pp. 283–296, John Wiley and Sons, Chichester (2001).

    Google Scholar 

  • Geladi P, Kowalski BR. An example of 2-block predictive partial least-squares regression with simulated data. Anal Chim Acta 185: 1–17 (1986).

    Article  CAS  Google Scholar 

  • Geng M, Ji J, Regnier, FE. Signature-peptide approach to detecting proteins in complex mixtures. J Chromatogr 870: 295–313 (2000).

    Article  CAS  Google Scholar 

  • Glass L, Mackey MC. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, New Jersey (1988).

    Google Scholar 

  • Gucek M, Gaspari M, Walhagen K et al. Capillary electrochromatography/nanoelectrospray mass spectrometry for attomole characterization of peptides. Rapid Comm Mass Spectrom 14: 1448–1454 (2000).

    Article  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17: 994–999 (1999).

    Article  CAS  Google Scholar 

  • Harrigan GG. Metabolic profiling: pathways in drug discovery. Drug Discov Today 7: 351–352 (2002).

    Article  PubMed  Google Scholar 

  • Hoogerbrugge R, Willig SJ, Kistemaker PG. Discriminant analysis by double stage principal component analysis. Anal. Chem 55: 1710–1712 (1983).

    Article  CAS  Google Scholar 

  • Heindl P, Dietel P, Spiteller G. Distinction between urinary acids originating from nutrition and those produced in the human body. J Chromatogr 377: 3–14 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Holmes E, Nicholson JK, Nicholls AW et al. The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemom Intel Lab Sys 44: 245–255 (1998).

    Article  CAS  Google Scholar 

  • Hotelling, H. Analysis of a complex of statistical variables into principal components. J Ed Psychol 24: 417–441, 498–520 (1933).

    Article  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934 (2001).

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409: 860–921 (2001).

    Article  Google Scholar 

  • Jellum E. Profiling of human body fluids in healthy and disease states using gas chromatography and mass spectrometry, with special reference to organic acids. J Chromatogr 143: 427–462 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Jiménez CR, van Veelen PA, Li KW et al. Neuropeptide expression and processing as revealed by direct matrix-assisted laser desoiption ionization mass spectrometry of single neurons. J Neurochem 62: 404–407 (1994).

    Article  PubMed  Google Scholar 

  • Kitano H. Systems biology: a brief overview. Science 295: 1662–1664 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lamers RAN, Faber EJ, Jellema RHet al. Metabolic fingerprinting: identification of disease related biomarkers: a pilot study of osteoarthritis and vitamin C. J Nutr submitted (2002)

    Google Scholar 

  • Lindon JC, Nicholson JK, Everett JR. NMR spectroscopy of biofluids. Ann Rep NMR Spectr 38:1–88 (1999).

    Article  CAS  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12:289–320 (2000).

    Article  CAS  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nuc Magn Reson Spectr 39:1–40 (2001).

    Article  CAS  Google Scholar 

  • Mazereeuw M, Spikmans MV, Tjaden UR, van der Greef J. On-line isotachophoretic sample focusing for loadability enhancement in capillary electrochromatography-mass spectrometry. J Chromatogr 879: 219–233 (2000).

    Article  CAS  Google Scholar 

  • McLuckey SA, Wells JM. Mass analysis at the advent of the 21st century. Chem Rev 101: 571–606 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181–1189 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nierop AFM, Tas AC, van der Greef J. Reflected discriminant analysis. Chemom Intel Lab Sys 25: 249–263 (1994).

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol 19: 45–50 (2001).

    Article  CAS  Google Scholar 

  • Regnier FE, Riggs L, Zhang R et al. Comparative proteomics based on stable isotope labeling and affinity selection. J Mass Spectrom 37: 133–45 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sanford K, Soucaille P, Whited G, Chotani G. Genomics to fluxomics and physiomics — pathway engineering. Curr Opin Microbiol 5: 318–322 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Spiteller G. Kombination chromatographisher trennmethoden mit der massaspectrometiïe — ein moderned verfahren zur stoffwechseeluntersuchung. Angew Chem 97: 461–476 (1985).

    Article  CAS  Google Scholar 

  • Spiteller G. Linoleic acid peroxidation — the dominant peroxidation process in low density lipoprotein- and its relationship to chronic diseases. Chem Phys Lipids 95: 105–162 (1988).

    Article  Google Scholar 

  • Spiteller G. Investigation of aldehyde lipid peroxidation products by gas chromatography — mass spectrometry. J Chromatogr 843: 29–98 (1999).

    Article  CAS  Google Scholar 

  • Stanbury JB, Wyngaarden JB, Frederickson DS et al. The Metabolic Basis of Inherited Disease. 5th Edn. McGraw-Hill, New York (1983).

    Google Scholar 

  • Stoll M, Cowley AW, Tonellato PJ et al. A genomic-systems biology map for cardiovascular function. Science 294: 1723–1726 (2001).

    Article  PubMed  CAS  Google Scholar 

  • ‘t Hart, BA, Vogels JTWE, Gerwin Spijksma G et al. 1H-NMR spectroscopy combined with pattern recognition analysis reveals characteristic chemical patterns in urines of MS patients and non-human primates with MS-like disease. J Neurol Sci submitted (2002).

    Google Scholar 

  • Tas AC, van der Greef J, de Waart J et al. Comparison of direct chemical ionization and direct probe electron impact/chemical ionization pyrolysis for characterization of Pseudomonas and Serratia bacteria. J Anal Appl Pyrolysis 7: 249–255 (1985).

    Article  CAS  Google Scholar 

  • Tas AC, de Waart J, Bouwman J et al. Rapid characterization of Salmonella strains with direct chemical ionization pyrolysis. J Anal Appl Pyrol 11: 329–340 (1987).

    Article  CAS  Google Scholar 

  • Tas AC, Bastiaanse HB, van der Greef J, Kerkenaar A. Pyrolysis-direct chemical ionization mass spectrometry of the dimorphic fungus Candida albicans and the pleomorphic fungus Ophiostoma ulmi. J Anal Appl Pyrol 14: 309–321 (1989a).

    Article  CAS  Google Scholar 

  • Tas AC, ten Noever de Brauw MC, van der Greef J, Wieten G. Multivariate relations between data sets: canonical correlation of mass spectral and chromatographic results. In Advances in Mass Spectrometry. Vol. 11. Longevialle P (Ed) pp. 1146–1147, Heyden and Son, London (1989b).

    Google Scholar 

  • Tas AC, Odink J, van der Greef J et al. Characterization of virus infected cell cultures by pyrolysis/direct chemical ionization mass spectrometry. Biomed Environ Mass Spectrom 18: 757–760 (1989c).

    Article  PubMed  CAS  Google Scholar 

  • Tas AC, van den Berg H, Odink J et al. Direct chemical ionization — mass spectrometric profiling in premenstrual syndrome. J Pharm Biomed Anal 7: 1239–1247 (1989d).

    Article  PubMed  CAS  Google Scholar 

  • Tas AC, van der Greef J. Pyrolysis: mass spectrometry under soft ionization conditions. Trends Anal Chem 12: 60–66 (1993).

    Article  CAS  Google Scholar 

  • Tas AC, van der Greef J. Mass spectrometric profiling and pattern recognition. Mass Spectrom Rev 13: 155–181 (1995).

    Article  Google Scholar 

  • Tsai H. Separation methods used in the determination of choline and acetylcholine. J Chromatogr 747: 111–122 (2000).

    Article  CAS  Google Scholar 

  • Valentine SJ, Kulchania M, Barnes CAS, Clemmer DE. Multidimensional separations of complex peptide mixtures: a combined high-performance liquid Chromatography/ion mobility/time-of-flight mass spectrometry approach. Int J Mass Spectrom 212: 97–109 (2001).

    Article  CAS  Google Scholar 

  • van der Greef J, Tas AC, Bouwman J et al. Evaluation of field desoiption and fast atom bombardment mass spectrometric profiles by pattern recognition techniques. Anal Chimb Acta 150:45–52 (1983).

    Article  Google Scholar 

  • van der Greef J, Leegwater D. Urine profile analysis by field desorption mass spectrometry, a technique for detecting metabolites of xenobiotics. Biomed Mass Spectrom 10: 1–14 (1983).

    Article  PubMed  Google Scholar 

  • van der Greef J, Bouwman J, Odink J et al. Evaluation of field desorption mass spectrometric profiles by quotient weighting. Biomed Mass Spectrom 11: 535–538 (1984).

    Article  Google Scholar 

  • van der Greef J. Field desorption mass spectrometry in bioanalysis. Trends Anal Chem 5: 241–246 (1986).

    Article  Google Scholar 

  • van der Greef J, Tas AC, Bouwman J, ten Noever de Brauw MC. Pattern recognition of complex matrix profiles generated by soft ionization methods. Adv Mass Spectrom 10: 1227–1228 (1986).

    Google Scholar 

  • van der Greef J, Tas AC, ten Noever de Brauw MC. Direct chemical ionization-pattem recognition: characterization of bacteria and body fluid profiling. Biomed Environ Mass Spectrom 16: 45–50 (1988a).

    Article  PubMed  Google Scholar 

  • van der Greef J, de Waart J, Tas AC. Characterization of algae by pyrolysis-direct chemical ionization mass spectrometry. In COST 48: Aquatic Primary Biomass- Marine Macwalgae. Proc 2nd Workshop of the COST 48 Subgroup 3: Biomass Conversion Removal and Use of Nutrients, de Waart J, Nienhuis PH (Ed) pp. 34-49, TNO-CIVO Zeist, DIHO Yerseke (1988b).

    Google Scholar 

  • van Strien FJC, Jespersen S, van der Greef J et al. Identification of POMC processing products in single melanotrope cells by matrix-assisted laser desorption/ionization mass spectrometry. FEBS Lett 379: 165–170 (1996).

    Article  PubMed  Google Scholar 

  • van Veelen PA, Jiménez CR, Li KW et al. Direct peptide profiling of single neurons by matrix-assisted laser desorption-ionization mass spectrometry. Org Mass Spectrom 28: 1542–1546 (1993).

    Article  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 291: 1304–1351 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Verner, J. Large-scale prediction of phenotype: concept. Biotech Bioeng 69: 664–678 (2000).

    Article  Google Scholar 

  • Vogels JTWE, Tas AC, van der Greef J. Canonical correlation of proton nuclear magnetic resonance and pyrolyis-direct chemical ionization mass spectroscopic data used in the authentication of wines. In Trends in Flavour Research. Maarse H, van der Heij DG (Ed) pp. 99–106, Elsevier, Amsterdam (1994).

    Google Scholar 

  • Vogels JTWE, Tas AC, Venekamp J, van der Greef J. Partial linear fit: a new NMR spectroscopy preprocessing tool for pattern recognition applications. J Chemometries 10: 425–438 (1996a).

    Article  CAS  Google Scholar 

  • Vogels JTWE, Arts CJM, Tas AC et al. Application of proton nuclear magnetic resonance spectroscopy and multivariate analysis as an indirect screening method for monitoring the illegal use of growth promoters. In EuroResidue III: Conference on Residues of Veterinary Drugs in Food. Haagsma N, Ruiter A (Ed) pp 968–972, University of Utrecht, Veldhoven (1996b).

    Google Scholar 

  • Vogels JTWE, Terwel L, Tas AC et al. Detection of adulteration in orange juices by a new screening method using proton NMR spectroscopy in combination with pattern recognition techniques. J Agrie Food Chem 44: 175–180 (1996c).

    Article  CAS  Google Scholar 

  • Watkins SM. Comprehensive lipid analysis: a powerful metanomic tool for predictive and diagnostic medicine. Israel Med Assoc J 2: 722–724 (2000).

    CAS  Google Scholar 

  • Watkins SM, Hammock BD, Newman JW, German JB. Individual metabolism should guide agriculture toward foods for improved health and nutrition. Am J Clin Nutr 74: 283–286 (2001).

    PubMed  CAS  Google Scholar 

  • Winding W, Haverkamp J, Kistemaker PG. Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal Chem 55: 81–88 (1983).

    Article  Google Scholar 

  • Windig W, Phalp JM, Payne AW. A noise and background reduction method for component detection in liquid chromatography mass spectrometry. Anal Chem 68: 3602–3606 (1996).

    Article  CAS  Google Scholar 

  • Wold, SJ. Pattern recognition by means of disjoint principal components models. J Pattern Recogn 8:127–139 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Greef, J. et al. (2003). The Role of Metabolomics in Systems Biology. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics