Skip to main content

Using Mutant Mice to Study the Role of Voltage-Gated Calcium Channels in the Retina

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Neuronal voltage-gated calcium channels (VGCCs) are critical to numerous cellular functions including synaptogenesis and neurotransmitter release. Mutations in individual subunits of VGCCs are known to result in a wide array of neurological disorders including episodic ataxia, epilepsy, and migraines. The characterization of these disorders has focused on channel function within the brain. However, a defect in the retina-specific a1F subunit of an L-type VGCC results is a loss of visual sensitivity or the incomplete form of X-linked congenital stationary night blindness (CSNB2). Based on the electroretinographic phenotype of these patients this channel type is localized to the axon terminal of photoreceptor cells and results in a loss of signal transmission from photoreceptors to bipolar cells. A mouse with a deletion of theß2subunit of VGCCs in the central nervous system was recently shown to have a similar phenotype as CSNB2 patients. The identification of the role of VGCCs in this disorder highlights the potential association of other VGCC mutations with retinal disorders. The study of the role of these channels in normal retinal function may also be elucidated by the characterization of retinal structure and visual function in the numerous knockout, transgenic, and naturally occurring mouse mutants currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft FM. Ion channels and disease. San Diego: Academic Press, 2000.

    Google Scholar 

  2. Ptacek LJ, George AL, Griggs RC et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 1991; 67:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  3. Jurkat-Rott K, Lehmann-Horn F, Elbaz A et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 1994; 3:1415–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+channel gene CACNLIA4. Cell 1996; 87:543–552.

    Article  PubMed  CAS  Google Scholar 

  5. Bech-Hansen NT, Naylor MJ, Maybaum TA. Loss-of-function mutations in a calcium-channel at-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:264–267.

    Article  PubMed  CAS  Google Scholar 

  6. Strom TM, Nyakatura G, Apfelstedt-Sylla E et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:260–263.

    Article  PubMed  CAS  Google Scholar 

  7. Friend KL, Crimmins D, Phan TG et al. Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM. Hum Genet 1999; 105:261–265.

    Article  PubMed  CAS  Google Scholar 

  8. Escayg A, De Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel 04-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66:1531–1539.

    Article  PubMed  CAS  Google Scholar 

  9. Ducros A, Denier C, Jourtel A. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 2001; 345:17–24.

    Article  PubMed  CAS  Google Scholar 

  10. Catterall WA. Structure and regulation of voltage-gated Ca2+channels. Annu Rev Cell Dev Biol 2000; 16:521–555.

    Article  PubMed  CAS  Google Scholar 

  11. Ertel EA, Campbell KP, Harpold MMA. The nomenclature of voltage-gated calcium channels. Neuron 2000; 25:533–535.

    Article  PubMed  CAS  Google Scholar 

  12. Burgess DL, Gefrides LA, Poreman PJ et al. A cluster of three novel Ca2+channel y subunit genes on chromosome 19q13.4: evolution and expression profile of the y subunit gene family. Genomics 2001; 71:339–350.

    Article  PubMed  CAS  Google Scholar 

  13. Nachman-Clewner M, St. Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 1999; 415:1–16.

    CAS  Google Scholar 

  14. Singer JH, Mirotznik RR, Mirotznik RR et al. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina. J Neurosci 2001; 21:8514–22.

    PubMed  CAS  Google Scholar 

  15. DeWaard M, Gumett CA, Campbell KKP. Stuctural and functional diversity of voltage-activated calcium channels. Ion channels 1996; 4:41–87.

    CAS  Google Scholar 

  16. Dowling JE, Boycott BB. Organization of the primate retina: electron microscopy. Proc R Soc London 1966; 166:80–111.

    Article  CAS  Google Scholar 

  17. von Gersdorff H. The ribbon synapse: Versatile signal transducers. Neuron 2001; 29:7.

    Article  Google Scholar 

  18. Morgans CW. Neurotransmitter release at ribbon synapses in the retina. Immunol Cell Biol 2000; 78:442–6.

    Article  PubMed  CAS  Google Scholar 

  19. DeVries S, Baylor D. Synaptic circuitry of the retina and olfactory bulb. Cell 1993; 72:139–149.

    Article  PubMed  Google Scholar 

  20. Tachibana M, Okada T, Arimura T et al. Dihydropyrinine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish. J Neurosci 1993; 13:2898–2909.

    PubMed  CAS  Google Scholar 

  21. Pan Z-H. Differential expression of high-and tow types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J Neurophysiol 2000; 83:513–527.

    PubMed  CAS  Google Scholar 

  22. Morgans CW. Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 1999; 11:2989–2993.

    Article  PubMed  CAS  Google Scholar 

  23. Yagi T, Macleish PR. Ionic conductances of monkey solitary cone inner segments. J Neurophysiol 1994; 71:656–665.

    PubMed  CAS  Google Scholar 

  24. de la villa P, Vaquero CF, Kaneko A. Two types of calcium currents of the mouse bipolar cells recorded in the retinal slice preparation. Eur J Neurosci 1998; 10:317–323.

    Article  PubMed  Google Scholar 

  25. Morgans CW. Localization of the aiFcalcium channel subunit in the rat retina. Invest Ophthalmol & Vis Sci 2001; 42:2414–2418.

    CAS  Google Scholar 

  26. Ball SL, Powers PA, Shin H-S et al. The ßZ subunit of voltage-gated Ca2+channels is essential for normal synaptic transmission between photoreceptors and the inner retina. Invest Ophthal & Vis Sci 2002; in press.

    Google Scholar 

  27. Read DS, Ball SL, Pardue MT et al. Photoreceptor L-type voltage-dependant Ca2+channels are required for formation and/or maintenance of ribbon synapses in the OPL. Invest Ophthal Vis Sci 2001; 42:S365.

    Google Scholar 

  28. Robson JG, Frishman LJ. Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 1995; 12:837–850.

    Article  PubMed  CAS  Google Scholar 

  29. Hood D, Birch DG. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: applications and methods. Doc Ophthalmol 1997; 92:253–267.

    Article  CAS  Google Scholar 

  30. Zwingman T, Neumann PE, Noebels JL et al. Rocker is a new variant of the voltage-dependent calcium channel gene Cacnala. J Neurosci 2001; 21:1169–1178.

    PubMed  CAS  Google Scholar 

  31. Doyle J, Ren X, Lennon G et al. Mutations in the Cacnlla4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia intotteringandleaner mutant mice.Mamm Genome 1997; 8:113–120.

    Article  PubMed  CAS  Google Scholar 

  32. Fletcher CF, Lutz CM, O’Sullivan TN et al. Absence epilepsy intottering mutant miceis associated with calcium channel defects. Cell 1996; 87:607–617.

    Article  PubMed  CAS  Google Scholar 

  33. Sidman RL, Green MC, Appel SH. Catalog of the neurological mutants of the mouse. Harvard UP: Cambridge, 1965.

    Google Scholar 

  34. Noebels JL, Sidman RL. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mousetottering.Science 1979; 204:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  35. Melena J, Osborne NN. Voltage-dependent calcium channels in the rat retina: involvement in NMDA-stimulated influx of calcium. Exp Eye Res 2001; 72:393–401.

    Article  PubMed  CAS  Google Scholar 

  36. Kamphius W, Hendriksen H. Expression patterns of voltage-dependent calcium channel alpha 1 subunits (alpha 1A-alpha 1E) mRNA in rat retina. Brain Res Mol Brain Res. 1998; 55:209–20.

    Article  Google Scholar 

  37. Kim D, Song I, Keum S et al. Lack of the burst firing of thalmocortical relay neurons and resistance to absence seizures in mice lacking alpha 1G T-type Cat+channels. Neuron 2001; 31:35–45.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson SM, Toth PT, Oh SBetal. The status of voltage-dependent calcium channesl in alE knockout mice. J Neurosci 2000; 20:8566–8571.

    PubMed  CAS  Google Scholar 

  39. Platzer J, Engel J, Schrott-Fischer A et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Cat+channels. Cell 2000; 102:89–97.

    Article  PubMed  CAS  Google Scholar 

  40. Cork Ri, Namkung Y, Shin H-S et al. Development of the visual pathway is disrupted in mice with a targeted disruption of the calcium chanvel (33-subunit gene. J Comp Neurol 2001; 440:177–191.

    Article  Google Scholar 

  41. Nakamura M, Ito S, Terasaki H et al. Novel CACNA1F mutations in Japanese patients with incomplete congenital stationary night blindness. Invest Ophthalmol Vis Sci 2001; 42:1610–1616.

    PubMed  CAS  Google Scholar 

  42. Miyake Y, Yagasaki K, Horiguchi M et al. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986; 104:1013–1020.

    Article  PubMed  CAS  Google Scholar 

  43. Gregg RG, Messing A, Strube C et al. Absence of the 13 subunit(cchbl)of the skeletal muscle dihydropyridine receptor alters expression of the alsubunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 1996; 93:3961–13966.

    Article  Google Scholar 

  44. Xu X, Quiambao AB, Roveri L et al. Degeneration of cone photoreceptors induced by expression of theMasioncogene. Exp Neurol 2000; 163:207–219.

    Article  PubMed  CAS  Google Scholar 

  45. Wachmeister L. Some aspects of the oscillatory response of the retina. Prog Brain Res 2001; 131:465–74.

    Article  Google Scholar 

  46. Lamb TD. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci USA 1996; 93:566–570.

    Article  PubMed  CAS  Google Scholar 

  47. Jacobs GH, Neitz J, Deegan 2d JF. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 1991; 353:655–656.

    Article  PubMed  CAS  Google Scholar 

  48. Pardue MT, McCall MA, LaVail MM et al. A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 1998; 39:2443–2449.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ball, S.L., Gregg, R.G. (2002). Using Mutant Mice to Study the Role of Voltage-Gated Calcium Channels in the Retina. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics