Skip to main content

Angiogenesis Inhibitors and Their Therapeutic Potentials

  • Chapter
New Trends in Cancer for the 21st Century

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 532))

Abstract

The observation that tumor growth is accompanied by increased vascularity was reported nearly a century ago’. The therapeutic potentials that target tumor blood vessels was suggested more than three decades ago’. Inspired by this hypothesis, many investigators have jointed to the field of antiangiogenesis with an obvious goal of finding angiogenesis inhibitors that block tumor growth and metastasis. Over the last decade, the field of antiangiogenesis has become one of the key focuses in development of new cancer therapeutic drugs. The simple reason that angiogenesis research has received tremendous surge is that other anti-cancer therapeutic strategies including chemotherapy and radiotherapy do not seem to effectively block tumor growth. On contrary, they often produce toxic side-effects and therapeutic resistance. Thus, the antiangiogenesis approach has raised a new hope for cancer patients.Less than 10 years ago, only a few compounds, including several small chemical molecules and a couple of endogenous protein molecules have been described as angiogenesis inhibitors. These few angiogenesis inhibitors were barely enough to make a publishable table in a review article. Today, discovery of novel angiogenesis inhibitors has become a competitive business among many pharmaceutical companies with a hope to commercialize these compounds as therapeutic drugs against cancer and other angiogenesis dependent diseases. As a result, there is almost a new angiogenesis inhibitor being identified or reported every other week. Thus, it is almost impossible to give a complete overview of the entire field. According to their actions, angiogenesis inhibitors can be classified as: 1) Angiogenic factor antagonists; 2) Angiogenic factor receptor antagonists; 3) Protease inhibitors; 3) Anti-inflammatory compounds; 4) Matrix protein antagonists; 5) Cytokines; and 6) Direct endothelial cell inhibitors. Preclinical studies show that most of angiogenesis inhibitors effectively block tumor growth

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algire, G. H., Chalkley, H. W., Legallais, F. Y., and Park, H. D. (1945) Vascular reactions of normal and malignant tissues in vivo.J. Natl Cancer lnst6, 73–85

    Google Scholar 

  2. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications.N Engl J Med285, 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  3. Dembner, A. (2002) Tumor fighting drugs suffer setbacks.Boston GlobeTeusday, C1–C2

    Google Scholar 

  4. Gimbrone, M. A., Jr., Cotran, R. S., Leapman, S. B., and Folkman, J. (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea.JNatl Cancer Inst52, 413–427.

    Google Scholar 

  5. McDonald, D. M., and Baluk, P. (2002) Significance of blood vessel leakiness in cancer.Cancer Res62,5381–5385.

    PubMed  CAS  Google Scholar 

  6. Folberg, R., Hendrix, M. J., and Maniotis, A. J. (2000) Vasculogenic mimicry and tumor angiogenesis.Am J Pathol156, 361–381.

    Article  PubMed  CAS  Google Scholar 

  7. Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe’er, J., Trent, J. M., Meltzer, P. S., and Hendrix, M. J. (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry.Am JPathol155, 739–752.

    Article  CAS  Google Scholar 

  8. Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., Jain, R. K., and McDonald, D. M. (2000) Openings between defective endothelial cells explain tumor vessel leakiness.Am J Pathol156, 1363–1380.

    Article  PubMed  CAS  Google Scholar 

  9. Cao, Y. (1998) Endogenous angiogenesis inhibitors: angiostatin, endostatin, and other proteolytic fragments.Prog Mol Subcell Biol20, 161–176.

    Article  PubMed  CAS  Google Scholar 

  10. Cao, Y., Linden, P., Farnebo, J., Cao, R., Eriksson, A., Kumar, V., Qi, J. H., Claesson-Welsh, L., and Alitalo, K. (1998) Vascular endothelial growth factor C induces angiogenesis in vivo.Proc Natl Acad Sci USA95, 14389–14394.

    Article  PubMed  CAS  Google Scholar 

  11. Migdal, M., Huppertz, B., Tessler, S., Comforti, A., Shibuya, M., Reich, R., Baumann, H., and Neufeld, G. (1998) Neuropilin-1 is a placenta growth factor-2 receptor.J Biol Chem273, 22272–22278.

    Article  PubMed  CAS  Google Scholar 

  12. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor.Cell92, 735–745.

    Article  PubMed  CAS  Google Scholar 

  13. Makinen, T., Jussila, L., Veikkola, T., Karpanen, T., Kettunen, M. I., Pulkkanen, K. J., Kauppinen, R., Jackson, D. G., Kubo, H., Nishikawa, S., Yla-Herttuala, S., and Alitalo, K. (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3.Nut Med7, 199–205.

    Article  CAS  Google Scholar 

  14. Ferrara, N., and Alitalo, K. (1999) Clinical applications of angiogenic growth factors and their inhibitors.Nat Med5, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  15. Cao, Y., Ji, W. R., Qi, P., and Rosin, A. (1997) Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing.Biochem Biophys Res Commun235, 493–498.

    Article  CAS  Google Scholar 

  16. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P., and Persico, M. G. (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor.Proc Natl Acad Sci USA88, 9267–9271.

    Article  PubMed  CAS  Google Scholar 

  17. Maglione, D., Guerriero, V., Viglietto, G., Ferraro, M. G., Aprelikova, O., Alitalo, K., Del Vecchio, S., Lei, K. J., Chou, J. Y., and Persico, M. G. (1993) Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PIGF), are transcribed from a single gene of chromosome 14.Oncogene8, 925–931.

    PubMed  CAS  Google Scholar 

  18. Cao, Y., Chen, H., Zhou, L., Chiang, M. K., Anand-Apte, B., Weatherbee, J. A., Wang, Y., Fang, F., Flanagan, J. G., and Tsang, M. L. (1996) Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR.J Biol Chem271, 3154–3162.

    Article  PubMed  CAS  Google Scholar 

  19. Cao, Y., Linden, P., Shima, D., Browne, F., and Folkman, J. (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor.J Clin Invest98, 2507–2511.

    Article  PubMed  CAS  Google Scholar 

  20. Olofsson, B., Pajusola, K., Kaipainen, A., von Euler, G., Joukov, V., Saksela, O., Orpana, A., Pettersson, R. F., Alitalo, K., and Eriksson, U. (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells.Proc Nutl Acad Sci USA93, 2576–2581.

    Article  CAS  Google Scholar 

  21. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.Nature362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  22. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., and Ullrich, A. (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant.Nature367, 576–579.

    Article  PubMed  CAS  Google Scholar 

  23. Relf, M., LeJeune, S., Scott, P. A., Fox, S., Smith, K., Leek, R., Moghaddam, A., Whitehouse, R., Bicknell, R., and Harris, A. L. (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis.Cancer Res57, 963–969.

    PubMed  CAS  Google Scholar 

  24. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P., and Hanahan, D. (2002) VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis.Cancer Cell1, 193–202.

    Article  PubMed  CAS  Google Scholar 

  25. Cao, Y., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., OReilly, M. S., Llinas, M., and Folkman, J. (1996) Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells.JBiol Chem271, 29461–29467.

    Article  CAS  Google Scholar 

  26. Cao, Y., Chen, A., An, S. S., Ji, R. W., Davidson, D., and Llinas, M. (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth.J Biol Chem272, 22924–22928.

    Article  PubMed  CAS  Google Scholar 

  27. Cao, R., Wu, H. L., Veitonmaki, N., Linden, P., Farnebo, J., Shi, G. Y., and Cao, Y. (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin-mediated proteolysis.Proc Nall Acad Sci USA96, 5728–5733.

    Article  CAS  Google Scholar 

  28. Li, T. S., Kaneda, Y., Ueda, K., Hamano, K., Zempo, N., and Esato, K. (2001) The influence of tumour resection on angiostatin levels and tumour growth--an experimental study in tumour-bearing mice.Eur J Cancer37, 2283–2288.

    Article  PubMed  CAS  Google Scholar 

  29. Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J., and Pizzo, S. V. (2001) Endothelial cell surface Fl -F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin.Proc Natl Acad Sci USA98, 6656–6661.

    Article  PubMed  CAS  Google Scholar 

  30. Moser, T. L., Stack, M. S., Asplin, I., EnghildJ.J., Hojrup, P., Everitt, L., Hubchak, S., Schnaper, H. W., and Pizzo, S. V. (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells.Proc Natl Acad Sci USA96, 2811–2816.

    Article  PubMed  CAS  Google Scholar 

  31. Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, O., and Holmgren, L. (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation.J Cell Biol152,1247–1254.

    Article  PubMed  CAS  Google Scholar 

  32. Griscelli, F., Li, H., Bennaceur-Griscelli, A., Soria, J., Opolon, P., Soria, C., Perricaudet, M., Yeh, P., and Lu, H. (1998) Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest.Proc Nall Acad Sci U S A95, 6367–6372.

    Article  CAS  Google Scholar 

  33. Claesson-Welsh, L., Welsh, M., Ito, N., Anand-Apte, B., Soker, S., Zetter, B., OReilly, M., and Folkman, J. (1998) Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD.Proc Nall Acad Sci USA95, 5579–5583.

    Article  CAS  Google Scholar 

  34. Cao, Y., and Cao, R. (1999) Angiogenesis inhibited by drinking tea.Nature398, 381.

    Article  PubMed  CAS  Google Scholar 

  35. Brakenhielm, E., Cao, R., and Cao, Y. (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes.Faseb J 151798–1800.

    PubMed  CAS  Google Scholar 

  36. Cao, Y., Cao, R., and Brakenhielm, E. (2002) Antiangiogenic mechanisms of diet-derived polyphenols.JNutr Biochem13, 380–390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cao, Y. (2003). Angiogenesis Inhibitors and Their Therapeutic Potentials. In: Llombart-Bosch, A., Felipo, V. (eds) New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, vol 532. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0081-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4914-3

  • Online ISBN: 978-1-4615-0081-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics