Skip to main content

The Sense of Hearing in Fishes

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

Abstract

This chapter chronicles the evolution of experiments from 1966 through 2011 that led to determining what fish listen to. By 2009, it became clear that goldfish are listening to the soundscape, like most other animals. This conclusion is based on three conceptions: (1) the fish brain is similar in morphotype to all vertebrate brains; (2) the goldfish, at least, has the processing power to analyze complex soundscapes; and (3) the processing of fish vocalizations couldn’t be a determining factor in the evolution of fish hearing. Goldfish possess the sense of hearing required to process the various sources likely making up a fish’s soundscape. They seem to be able to process the acoustic spectrum. They can process reverberations and reflections and various temporal patterns, and some species can locate the sources of sound using binaural hearing. Suggested here, then, is the notion of environmental soundscapes as the most probably important sources of information to organisms. Environmental information exists to be exploited for appropriate behavior with respect to audible sound sources and events, and fish have the capacity to exploit it for general orientation. This is what fish and other species listen to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bregman, A. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bullock, T. (1992). Comparisons of major and minor taxa reveal two kinds of differences: “lateral” adaptations and “vertical” changes in grade. In D. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 15–19). New York: Springer Verlag.

    Chapter  Google Scholar 

  • Cahn, P. H., Ed. (1967). Lateral line detectors. Bloomington: Indiana University Press.

    Google Scholar 

  • Coombs, S. L., Fay, R. R., & Elepfandt, A. (2010). Dipole source detection and tracking by the goldfish auditory system. Journal of Experimental Biology, 213, 3536–3547.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dijkgraaf, S. (1950). Untersuchungen uber die Functionen das Ohrlabyrinths bei Meeresfischen. Physiologia Comparata et Oecologia, 2, 81–106.

    Google Scholar 

  • Fay, R. R. (1969a). Auditory sensitivity of the goldfish within the near acoustic field. U.S. Naval Submarine Medical Center, Submarine Base, Groton, Connecticut, Report No. 605, 1–11.

    Google Scholar 

  • Fay, R. R. (1969b). Behavioral audiogram for the goldfish. Journal of Auditory Research, 9, 112–121.

    Google Scholar 

  • Fay, R. R. (1970a). Auditory frequency discrimination in the goldfish (Carassius auratus). Journal of Comparative and Physiological Psychology, 73, 175–180.

    Article  Google Scholar 

  • Fay, R. R. (1970b). Auditory frequency generalization in the goldfish (Carassius auratus). Journal of the Experimental Analysis of Behavior, 14, 353–360.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1972). Perception of amplitude-modulated auditory signals by the goldfish. Journal of the Acoustical Society of America, 52, 660–666.

    Article  Google Scholar 

  • Fay, R. R. (1973). Multisensory interaction in control of eye-stalk rotation response in the crayfish (Procambarus clarkii). Journal of Comparative and Physiological Psychology, 84, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1975). Dynamic properties of the compensatory eye-stalk rotation response of the crayfish (Procambarus clarkii). Comparative Biochemistry and Physiology, 51, 101–103.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1978). Phase-locking in goldfish saccular nerve fibres accounts for frequency discrimination capacities. Nature, 275, 320–322.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1980). Psychophysics and neurophysiology of temporal factors in hearing by the goldfish: Amplitude modulation detection. Journal of Neurophysiology, 44, 312–332.

    PubMed  CAS  Google Scholar 

  • Fay, R. R. (1985). Sound intensity processing by the goldfish. Journal of the Acoustical Society of America, 78, 1296–1309.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1990). Suppression and excitation in auditory nerve fibers of the goldfish, Carassius auratus. Hearing Research, 48, 93–110.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1991). Masking and suppression in auditory nerve fibers of the goldfish, (Carassius auratus). Hearing Research, 55, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1992). Analytic listening by the goldfish. Hearing Research, 59, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1994). Perception of temporal acoustic patterns by the goldfish (Carassius auratus). Hearing Research, 76, 158–172.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1997). Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, & E. Hecht-Poinar (Eds.) Diversity in auditory mechanics (pp. 69–75).Singapore: World Scientific Publishers.

    Google Scholar 

  • Fay, R. R. (1998). Auditory stream segregation in goldfish (Carassius auratus). Hearing Research, 120, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (2000). Frequency contrasts underlying auditory stream segregation in goldfish. Journal of the Association for Research in Otolaryngology, 1, 120–128.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fay, R. R. (2005). Pitch perception in goldfish. Hearing Research, 205, 7–20.

    Article  PubMed  Google Scholar 

  • Fay, R. R. (2009). Soundscape and the sense of hearing in fish. Integrative Zoology, 4, 26–32.

    Article  PubMed  Google Scholar 

  • Fay, R. R., & Popper, A. N. (1974). Acoustic stimulation of the ear of the goldfish (Carassius auratus). Journal of Experimental Biology, 61–260.

    Google Scholar 

  • Fay, R. R., & Coombs, S. (1983). Neural mechanisms in sound detection and temporal summation. Hearing Research, 10, 69–92.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R., & Ream, T. J. (1986). Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus). Journal of the Acoustical Society of America, 79, 1883–1895.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R., & Coombs, S. L. (1992). Psychometric functions for level discrimination and the effects of signal duration in the goldfish (Carassius auratus): Psychophysics and neurophysiology. Journal of the Acoustical Society of America, 92, 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R., Kendall, J. I., Popper, A. N., & Tester, A. L. (1974). Vibration detection by the macula neglecta of sharks. Comparative Biochemistry and Physiology, 47, 1235–1240.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R., Yost, W. A., & Coombs, S. (1983). Psychophysics and neurophysiology of repetition noise processing in a vertebrate auditory system. Hearing Research, 12, 31–55.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R., Chronopoulos, M., & Patterson, R. D. (1996). The sound of a sinusoid: Perception and neural representations in the goldfish (Carassius auratus). Auditory Neuroscience, 2, 377–392.

    Google Scholar 

  • Florentine, M. (1986). Level discrimination of tones as a function of duration, Journal of the Acoustical Society of America, 79, 792–798.

    Article  PubMed  CAS  Google Scholar 

  • Frisch, K. von, & Stetter, H. (1932). Untersuchungen uber den Sitz des Gehörsinnes bei der Elritze. Zeitschrift fur vergleichende Physiologie, 17, 686–801.

    Google Scholar 

  • Greenwood, D. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33, 1344–1356.

    Article  Google Scholar 

  • Harris, G. G. (1964). Considerations on the physics of sound production by fishes. In W. N. Tavolga (Ed.), Marine bio-acoustics (pp. 233–248). Oxford: Pergamon Press.

    Google Scholar 

  • Harris, G. G., & van Bergeijk, W. A. (1962). Evidence that the lateral line organ responds to near field displacements of a sound source in water. Journal of the Acoustical Society of America, 34, 1831–1841.

    Article  Google Scholar 

  • Hawking, S. (1988). A brief history of time. Toronto: Bantam Books, p. 12.

    Google Scholar 

  • Henry, K., & Lewis, E. (1992). One-tone suppression in the cochlear nerve of the gerbil. Hearing Research, 63, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Hilgard, E. R., & Marquis, D. G. (1940). Conditioning and learning. New York: Appleton-Century.

    Google Scholar 

  • Hill, K., Stange, G., Gummer, A., & Mo, J. (1989). A model proposing synaptic and extra-synaptic influences on the response of cochlear nerve fibers. Hearing Research, 39, 75–90.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, D. W., & Tavolga, W. N. (1967). Acoustic intensity limens in the goldfish. Animal Behaviour, 15, 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, D. W., & Tavolga, W. N. (1968). Acoustic frequency discrimination in the goldfish. Animal Behaviour, 16, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Kleerekoper, H., & Chagnon, E. (1954). Hearing in fish, with special reference to Semotilus atromaculatus atromaculatus (Mitchell). Journal of the Fisheries Research Board of Canada, 11,130–152.

    Article  Google Scholar 

  • Kreidl, A. (1893). Weitere Beitrage zur Physiologie des Ohrlabyrinthes: Versuche an Krebsen. Sitzungsberichteder Kaiserlichen Akadamie der Wissenschajt, Wien, Mathematische-Naturwissenschaftliche Klasse, 102, 149–174.

    Google Scholar 

  • Ladich, F. (1999). Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behavior and Evolution, 53, 288–304.

    Article  CAS  Google Scholar 

  • Lu, Z., & Fay, R. R. (1993). Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. Journal of Comparative Physiology, 173, 33–48.

    PubMed  CAS  Google Scholar 

  • Lu, Z., & Fay, R. R. (1995). Acoustic response properties of single units in the central posterior nucleus of the thalamus of the goldfish (Carassius auratus). Journal of Comparative Physiology, 176, 747–760.

    PubMed  CAS  Google Scholar 

  • Lu, Z., & Fay, R. R. (1996). Two-tone interaction in auditory nerve fibers and midbrain neurons of the goldfish, Carassius auratus. Auditory Neuroscience, 2, 257–273.

    Google Scholar 

  • McCormick, C. A., & Hernandez, D. V. (1996). Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish (Part 1 of 2). Brain Behavior and Evolution, 47,113–125.

    Article  CAS  Google Scholar 

  • Patterson, R. (1994). The sound of a sinusoid: Time-interval models. Journal of the Acoustical Society of America, 96, 1419–1428.

    Article  Google Scholar 

  • Pavlov, I. P., (1927). Conditioned reflexes. Translated by G. V. Anrep. London: Oxford University Press.

    Google Scholar 

  • Poggendorf, D. (1952). Die absoluten Hörschwellen des Zergwelses und Beiträge zur Physik des Weverschen Apparates der Ostariophysen. Zeitschrift für vergleichende Physiologie, 34, 222–257.

    Article  Google Scholar 

  • Popper, A. N., & Fay, R. R. (1973). Sound detection and processing by teleost fishes: A critical review. Journal of the Acoustical Society of America, 53, 1515–1529.

    Article  PubMed  CAS  Google Scholar 

  • Popper, A. N., & Fay, R. R. (1993). Sound detection and processing by fish: Critical review and major research questions. Brain Behaviour and Evolution, 41, 14–38.

    Article  CAS  Google Scholar 

  • Popper, A. N., & Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273, 25–36.

    Article  PubMed  Google Scholar 

  • Pumphrey, R. J. (1950). Hearing. In Physiological mechanisms in animal behaviour. Symposia of the Society for Experimental Biology, 4, 3–18.

    Google Scholar 

  • Ridgway, S., Wever, E. G., Mcormick, J. G., Palin, J., & Anderson, J. (1979). Hearing in the giant sea turtle, Chelonia mydas. Proceedings of the National Academy of Sciences of the USA, 64, 884–890.

    Article  Google Scholar 

  • Sand, O., & Karlsen, H. E. (1986). Detection of infrasound by the Atlantic cod. Journal of Experimental Biology, 125, 197–204.

    PubMed  CAS  Google Scholar 

  • Sand, O., Karlsen, H., & Knudsen, F. (2008). Comment on “Silent research vessels are not quiet.” Journal of the Acoustical Society of America, 121, EL145–EL150. Journal of the Acoustical Society of America, 123, 1831–1833.

    Google Scholar 

  • Tavolga, W. N., Ed. (1964). Marine bio-acoustics, Vol I. Oxford: Pergamon Press.

    Google Scholar 

  • Tavolga, W. N., Ed. (1967). Marine bio-acoustics, Vol II. Oxford: Pergamon Press.

    Google Scholar 

  • Tavolga, W. N., & Wodinski, J. (1963). Auditory capacities in fishes: Pure tone thresholds in nine species of marine teleosts. Bulletin of the American Museum of Natural History, 126, 177–240.

    Google Scholar 

  • van Bergeijk, W. A. (1967). The evolution of vertebrate hearing. In W. D. Neff (Ed.), Contributions to sensory physiology (pp. 1–49). New York: Academic Press.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New York: McGraw-Hill.

    Google Scholar 

  • Weber, E. H. (1820). De Aure et Auditu Hominis et Animalium. Pars I. De Aure Animalium Aquatilium (p. 134). Leipzig: Gerhard Fleischer.

    Google Scholar 

  • Wever, E. G. (1949). Theory of hearing. New York: John Wiley & Sons.

    Google Scholar 

  • Wever, E. G. (1978). The reptile ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever, E.G., & Bray, C.W. (1930). Auditory Nerve Impulses. Science 71(1834), 215

    Google Scholar 

  • Wever, E. G., & Lawrence, M. (1954). Physiological acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever, E. G., McCormick, J. G., Palin, J., & Ridgway, S. H. (1971). Cochlea of the dolphin, Tursiops truncatus: The basilar membrane. Proceedings of the National Academy of Sciences of the USA, 68, 2708–2711.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yost, W., Hill, R., & Perez-Falcon, T. (1978). Pitch and pitch discrimination of broadband signals with rippled power spectra. Journal of the Acoustical Society of America, 63, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  • Zeddies, D., Fay, R. R., Gray, M. D., Alderks, P. W., Acob, A., & Sisneros, J. A. (2011). Local acoustic particle motion guides sound source localization behavior in the plainfin midshipman fish (Porichthys notatus). Journal of Experimental Biology, 215, 152–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Fay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fay, R.R. (2014). The Sense of Hearing in Fishes. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_7

Download citation

Publish with us

Policies and ethics