Skip to main content

Noninvasive Arterial Pressure Monitoring

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

More than a century ago, the principle of counter-pressure and arterial wall unloading had been developed to measure arterial pressure noninvasively. Referring to the requirements for an adequate invasive pressure transducer, four noninvasive technologies using the counter-pressure principle are discussed: starting with only local and only quasi-static unloading of the arterial (tonometric method, with several fundamental issues), improving to uniform but still only quasi-static unloading (oscillometric method and auscultatory method, with fundamental issues remaining) to finally uniform and dynamic unloading at the correct setpoint (volume clamp and Physiocal method, solving the fundamental issues).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Philadelphia: Saunders; 2000.

    Google Scholar 

  2. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. 4th ed. London: Arnold; 1998.

    Google Scholar 

  3. Wesseling KH. A century of noninvasive arterial pressure measurement: from Marey to Peñáz and Finapres. Homeostasis. 1995;36:50–66.

    Google Scholar 

  4. Chung E, Chen G, Alexander B, Cannesson M. Non-invasive continuous blood pressure monitoring: a review of current applications. Front Med. 2013;7(1):91–101.

    Article  PubMed  Google Scholar 

  5. Marey EJ. La circulation du sang à l’ètat physiologique et dans les maladies. Paris: Masson; 1881.

    Google Scholar 

  6. Posey JA, Geddes LA, Williams H, More AG. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure part 1. Cardiovasc Res Cent Bull. 1969;8(1):15–25.

    PubMed  CAS  Google Scholar 

  7. Vendrik AJH, Vierhout RR. Die unblutige Registrierung des Blutdrucks. Theoretische Betrachtungen. Pflugers Arch. 1959;268(5):496–509.

    Article  PubMed  CAS  Google Scholar 

  8. Baker PD, Westenskow DR, Kuck K. Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure. Med Biol Eng Comput. 1997;35:271–8.

    Article  PubMed  CAS  Google Scholar 

  9. Amoore JN, Lemesre Y, Murray IC, Mieke S, King ST, Smith FE, et al. Automatic blood pressure measurement: the oscillometric waveform shape is a potential contributor to differences between oscillometric and auscultatory pressure measurements. J Hypertens. 2008;26(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  10. Drzewiecki G, Hood R, Apple H. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann Biomed Eng. 1994;22:88–96.

    Article  PubMed  CAS  Google Scholar 

  11. Ursino M, Cristalli C. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement. IEEE Trans Biomed Eng. 1996;43(8):761–78.

    Article  PubMed  CAS  Google Scholar 

  12. Babbs C. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiological mathematical model. Biomed Eng. 2012;11:56–78.

    Google Scholar 

  13. Ramsey M. Noninvasive automatic determination of mean arterial pressure. Med Biol Eng Comput. 1979;17:11–8.

    Article  PubMed  Google Scholar 

  14. Alpert BS. Oscillometric blood pressure values are algorithm-specific. Am J Cardiol. 2010;106(10):1524; author reply 1524–5.

    Article  PubMed  Google Scholar 

  15. Riva Rocci S. Un nuovo sfigmanometro. Gaz Med di Torino. 1906;47:981–96.

    Google Scholar 

  16. Hill L, Barnard H. A simple and accurate form of sphygmometer or arterial pressure gauge contrived for clinical use. Br Med J. 1897;2:904.

    Article  PubMed  CAS  Google Scholar 

  17. Korotkoff JS. On the subject of methods of measuring blood pressure. Bull Imp Military Med Acad (St Petersburg). 1905;11:365–7.

    Google Scholar 

  18. Anliker M, Raman KR. Korotkoff sounds at diastole – a phenomenon of dynamic instability of fluid-filled shells. Int J Solids Structures. 1966;2:467–91.

    Article  Google Scholar 

  19. Von Recklinghausen H. Unblutige Blutdruckmessung. Archiv Exp Path Pharmacol. 1906;5:325–504.

    Google Scholar 

  20. Bakx C, Oerlemans G, van den Hoogen H, van Weel C, Thein T. The influence of cuff size on blood pressure measurement. J Hum Hypertens. 1997;11:439–45.

    Article  PubMed  CAS  Google Scholar 

  21. Marks LA, Groch A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press Monit. 2000;5(3):153–8.

    Article  PubMed  CAS  Google Scholar 

  22. Ng KG, Small CF. Changes in oscillometric pulse amplitude envelope with cuff size: implications for blood pressure measurement criteria and cuff size selction. J Biomed Eng. 1993;15:279–82.

    Article  PubMed  CAS  Google Scholar 

  23. Manning DM, Kuchirka C, Kaminski J. Miscuffing: inappropriate blood pressure cuff application. Circulation. 1983;68(4):763–6.

    Article  PubMed  CAS  Google Scholar 

  24. Geddes LA, Whistler SJ. The error in indirect blood pressure measurement with the incorrect size of cuff. Am Heart J. 1978;96(1):4–8.

    Article  PubMed  CAS  Google Scholar 

  25. Peñáz J. Photoelectric measurement of blood pressure volume and flow in the finger. In: Digest of the 10th international conference on medical and biological engineering, Dresden, 1973. p. 104.

    Google Scholar 

  26. Wesseling KH, de Wit B, Settels JJ, Klawer WH. On the indirect registration of finger blood pressure after Peñáz. Funkt Biol Med. 1982;1:245–50.

    Google Scholar 

  27. Wesseling KH, de Wit B, van der Hoeven GMA, van Goudoever J, Settels JJ. Physiocal: calibrating finger vascular physiology for Finapres. Homeostasis. 1995;36:67–82.

    Google Scholar 

  28. Wesseling KH. Finger arterial pressure measurement with Finapres. Z Kardiol. 1996;85 Suppl 3:38–44.

    PubMed  Google Scholar 

  29. Wesseling KH, Settels JJ, de Wit B. The measurement of continuous finger arterial pressure noninvasively in stationary subjects. In: Biological and psychological factors in cardiovascular disease. Heidelberg: Springer; 1986. p. 355–75.

    Chapter  Google Scholar 

  30. Langewouters GJ, Zwart A, Busse R, Wesseling KH. Pressure diameter relationships of segments of human finger arteries. Clin Phys Physiol Meas. 1986;7(1):43–56.

    Article  PubMed  CAS  Google Scholar 

  31. Imholz BPM, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998;38:605–16.

    Article  PubMed  CAS  Google Scholar 

  32. Boehmer RD. Continuous, real-time monitor of blood pressure: Peñáz methodology applied to the finger. J Clin Monit. 1987;3:282–7.

    PubMed  CAS  Google Scholar 

  33. Martina JR, Westerhof BE, van Goudoever J, de Jonge N, van Lieshout JJ, Lahpor JR, et al. Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study. ASAIO J. 2010;56:221–7.

    Article  PubMed  Google Scholar 

  34. Martina JR, Westerhof BE, van Goudoever J, de Beaumont EMFH, Truijen J, Kim Y-S, et al. Noninvasive continuous arterial blood pressure monitoring with Nexfin. Anesthesiology. 2012;116(5):1092–103.

    Article  PubMed  CAS  Google Scholar 

  35. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit. 2012;26(4):267–78.

    Article  Google Scholar 

  36. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142–61.

    Article  PubMed  CAS  Google Scholar 

  37. Manual, electronic or automated sphygmomanometers. AAMI/CDV-1. SP10. Arlington: Association for the Advancement of Medical Instrumentation; 2002.

    Google Scholar 

  38. O’Brien E, Pickering T, Asmar R, Myers M, Parati G, Staessen J, et al. Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press Monit. 2002;7:3–17.

    Article  PubMed  Google Scholar 

  39. Ng KG. Review of measurement methods and clinical validation studies of noninvasive blood pressure monitors: accuracy requirements and protocol considerations for devices that require patient-specific calibration by a secondary method or device before use. Blood Press Monit. 2011;16:291–303.

    Article  PubMed  Google Scholar 

  40. Wax DB, Lin H-M, Leibowitz AB. Invasive and concomitant noninvasive intraoperative blood pressure monitoring. Observed differences in measurements and associated therapeutic interventions. Anesthesiology. 2011;115(5):973–8.

    Article  PubMed  Google Scholar 

  41. Geddes LA. Cardiovascular devices and their applications. New York: Wiley; 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Settels MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Settels, J.J. (2014). Noninvasive Arterial Pressure Monitoring. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics