Skip to main content

Neuron–Astrocyte Interactions in Neuroinflammation

  • Chapter
  • First Online:
Neuron-Glia Interaction in Neuroinflammation

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 7))

  • 1653 Accesses

Abstract

Reactive astrogliosis is a prominent feature of the brain inflammatory response and it represents a hallmark of many CNS pathologies including Alzheimer’s and Parkinson’s diseases and amyotrophic lateral sclerosis. While in physiological conditions astrocytes serve as multifunctional housekeeping cells, once activated they may affect neuronal survival in many different ways. Depending on the type of the stimuli and/or pathological conditions reactive astrogliosis may lead to either neuroprotective or neurotoxic inflammatory responses. Here we summarize the current knowledge of the origins and neuropathological features of reactive astrogliosis. Furthermore, we discuss the role and the potential of astrocytes as resident brain immune cells with particular emphasis on how astrocyte immune profiles may determine the cross talk between activated astrocytes and neurons in acute brain injuries such as stroke versus nonresolving, chronic inflammation associated with neurodegenerative disorders. Finally, because of the complex nature of the brain inflammatory response and its relevance in drug discovery programs, we highlight the value and importance of live imaging models in which different elements of neuroinflammation, including astrocytes activation and glia/neuron cross talk, can be visualized and studied in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood–brain barrier

CCD:

Coupled charged device

CNS:

Central nervous system

ERE:

Estrogen responsive element

Fluc:

Firefly luciferase

FTD:

Fronto-temporal dementia

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

ICAM-1:

Intercellular adhesion molecule 1

IFN-γ:

Interferon gamma

IL-1β:

Interleukin-1beta

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

MCAO:

Middle cerebral artery occlusion

MHC:

Major histocompatibility complex

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

NPCs:

Neuronal progenitor cells

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SOD1:

Cu/Zn Superoxide Dismutase 1

TDP-43:

Tar binding protein 43

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor alpha

References

  • Abdel-Haq N, Hao HN, Lyman WD (1999) Cytokine regulation of CD40 expression in fetal human astrocyte cultures. J Neuroimmunol 101:7–14

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160:4671–4680

    PubMed  CAS  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  PubMed  CAS  Google Scholar 

  • Bae MK, Kim SR, Lee HJ, Wee HJ, Yoo MA, Ock Oh S, Baek SY, Kim BS, Kim JB, Sik-Yoon BSK (2006) Aspirin-induced blockade of NF-kappaB activity restrains up-regulation of glial fibrillary acidic protein in human astroglial cells. Biochim Biophys Acta 1763(3):282–289

    Article  PubMed  CAS  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695

    Article  PubMed  Google Scholar 

  • Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP et al (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105:3581–3586

    Article  PubMed  CAS  Google Scholar 

  • Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  PubMed  CAS  Google Scholar 

  • Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB et al (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 90:10061–10065

    Article  PubMed  CAS  Google Scholar 

  • Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6:237–245

    Article  PubMed  CAS  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  PubMed  CAS  Google Scholar 

  • Cordeau P Jr, Lalancette-Hebert M, Weng YC, Kriz J (2008) Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 39:935–942

    Article  PubMed  CAS  Google Scholar 

  • Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608–614

    Article  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: Gfap-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Segura LM, Chowen JA, Parducz A, Naftolin F (1994) Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol 44:279–307

    Article  PubMed  CAS  Google Scholar 

  • Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci 20:660–665

    PubMed  CAS  Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  PubMed  CAS  Google Scholar 

  • Gravel M, Weng YC, Kriz J (2011) Model system for live imaging of neuronal responses to injury and repair. Mol Imaging 10:434–445

    PubMed  CAS  Google Scholar 

  • Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Oostveen JA, Gurney ME (1998) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23:249–256

    Article  PubMed  CAS  Google Scholar 

  • Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T et al (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2:22

    Article  PubMed  Google Scholar 

  • Herrmann M, Ehrenreich H (2003) Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 21:177–190

    PubMed  CAS  Google Scholar 

  • Hutter E, Boridy S, Labreque S, Lalancette-Hébert M, Kriz J, Winnik F, Maysinger D (2010) Microglial uptake and response to gold nanoparticles: the effects of nanomorphology and surface. ACS Nano 4:2595–2606

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Gravel M, Kriz J (2009) Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia 57:1130–1142

    Article  PubMed  Google Scholar 

  • Keller F, Gravel M, Kriz J (2011) Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 228:69–79

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    Article  PubMed  CAS  Google Scholar 

  • Kriz J, Lalancette-Hébert M (2009) Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 117:497–509

    Article  PubMed  CAS  Google Scholar 

  • Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136:1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Lalancette-Hébert M, Phaneuf D, Soucy G, Weng YC, Kriz J (2009) Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 132:940–954

    Article  PubMed  Google Scholar 

  • Lalancette-Hébert M, Moquin A, Choi AO, Kriz J, Maysinger D (2010) Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia. Mol Pharm 7(4):1183–1194

    Article  PubMed  Google Scholar 

  • Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE (1994) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 4:259–275

    Article  PubMed  CAS  Google Scholar 

  • Lepore AC, Dejea C, Carmen J, Rauck B, Kerr DA, Sofroniew MV et al (2008) Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration. Exp Neurol 211:423–432

    Article  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Ho P, Steinman L, Wyss-Coray T (2008) Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. J Neuroinflammation 5:6

    Article  PubMed  Google Scholar 

  • Ma D, Jin S, Li E, Doi Y, Parajuli B, Noda M et al (2012) The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 254:10–18. doi:pii: S0165-5728(12)00254-8

    Article  PubMed  Google Scholar 

  • Magnus T, Carmen J, Deleon J, Xue H, Pardo AC, Lepore AC et al (2008) Adult glial precursor proliferation in mutant SOD1G93A mice. Glia 56:200–208

    Article  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  PubMed  CAS  Google Scholar 

  • Maysinger D, Behrendt M, Lalancette-Hebert M, Kriz J (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7:291–302

    Article  Google Scholar 

  • McGeer PL, McGeer EG, Kawamata T, Yamada T, Akiyama H (1991) Reactions of the immune system in chronic degenerative neurological diseases. Can J Neurol Sci 18:376–379

    PubMed  CAS  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  PubMed  CAS  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  PubMed  CAS  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Messing A, Azzam N, Brenner M (1998) Mice lacking gfap are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9:1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Benveniste EN (2000) Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. J Biol Chem 275: 23674–23684

    Article  PubMed  CAS  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58:831–838

    PubMed  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  PubMed  CAS  Google Scholar 

  • Pekny M (2001) Astrocytic intermediate filaments: lessons from gfap and vimentin knock-out mice. Prog Brain Res 132:23–30

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145:503–514

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Petzold A, Keir G, Kerr M, Kay A, Kitchen N, Smith M, Thompson EJ (2006) Early identification of secondary brain damage in subarachnoid hemorrhage: a role for glial fibrillary acidic protein. J Neurotrauma 23:1179–1184

    Article  PubMed  Google Scholar 

  • Pihlaja R, Koistinaho J, Kauppinen R, Sandholm J, Tanila H, Koistinaho M (2011) Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes. Glia 59:1643–1657

    Article  PubMed  Google Scholar 

  • Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E et al (2009) Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol 183:2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Quintana A, Erta M, Ferrer B, Comes G, Giralt M, Hidalgo J (2012) Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior. Brain Behav Immun 27(1):162–173. doi:pii: S0889-1591(12)00473-4

    PubMed  Google Scholar 

  • Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    Article  PubMed  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  PubMed  CAS  Google Scholar 

  • Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Finch CE (1998) Increased synaptic sprouting in response to estrogen via an apolipoprotein e-dependent mechanism: implications for Alzheimer’s disease. J Neurosci 18:3180–3185

    PubMed  CAS  Google Scholar 

  • Swarup V, Phaneuf D, Dupré N, Petri S, Strong M, Kriz J et al (2011a) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor-κB-mediated pathogenic pathways. J Exp Med 208:2429

    Article  PubMed  CAS  Google Scholar 

  • Swarup V, Phaneuf D, Bareil C, Roberston J, Kriz J, Julien JP (2011b) Pathological hallmarks of ALS/FTLD in transgenic mice produced with genomic fragments encoding wild-type or mutant forms of human TDP-43. Brain 134:2610–2626

    Article  PubMed  Google Scholar 

  • Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD (1998) Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160:4271–4279

    PubMed  CAS  Google Scholar 

  • Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 50:307–320

    Article  PubMed  Google Scholar 

  • Vissers JL, Mersch ME, Rosmalen CF, van Heumen MJ, van Geel WJ, Lamers KJ et al (2006) Rapid immunoassay for the determination of glial fibrillary acidic protein (gfap) in serum. Clin Chim Acta 366:336–340

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513–17518

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH et al (2006) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  Google Scholar 

  • Yuanshu D, Benveniste EN (2001) Immune function of astrocyte. Glia 36:180–190

    Article  Google Scholar 

  • Zhu L, Ramboz S, Hewitt D, Boring L, Grass DS, Purchio AF (2004) Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367:210–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

 This work was supported by the Canadian Institutes of Health Research (CIHR) and Heart and Stroke Foundation of Quebec (HSFQ). J.K. is a Senior Scholar from the Fonds de la Recherche en Santé du Québec (FRSQ).

Conflict of interest statement The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasna Kriz M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kriz, J. (2013). Neuron–Astrocyte Interactions in Neuroinflammation. In: Suzumura, A., Ikenaka, K. (eds) Neuron-Glia Interaction in Neuroinflammation. Advances in Neurobiology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8313-7_5

Download citation

Publish with us

Policies and ethics