Skip to main content

Structure of Chromatin in Spermatozoa

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 791))

Abstract

The specialized structure of the sperm chromatin has a dual function – first to protect the DNA from damage during storage and transport to the oocyte, and then to enable a rapid and complete unpacking of the undamaged paternal genome in the ooplasm. It is evident that zinc has a pivotal role in maintaining the structural stability and in enabling a rapid decondensation at the appropriate time. It is important for the sperm chromatin structure that the spermatozoa are ejaculated together with the zinc-rich prostatic secretion. Early exposure to zinc-binding seminal vesicular fluid can deplete the sperm chromatin of zinc and most likely induce surplus formation of disulfide bridges, likely to cause incomplete and delayed decondensation of the sperm chromatin in the oocyte. A premature decrease in sperm chromatin structure stability is likely to increase the risk for damage to the DNA due to increased access to the genome for DNA damaging compounds. The status of the sperm chromatin structure can vary in vitro depending on the exposure to zinc-depleting conditions when spermatozoa are stored in semen after ejaculation. When sperm DNA damage tests are evaluated and validated, it is therefore essential to also take into account the dynamics of zinc-dependent and zinc-independent sperm chromatin stability.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4614-7783-9_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-7783-9_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arver S (1982a) Studies on zinc and calcium in human seminal plasma. Acta Physiol Scand 507:1–21

    CAS  Google Scholar 

  • Arver S (1982b) Zinc and zinc ligands in human seminal plasma. III. The principal low molecular weight zinc ligand in prostatic secretion and seminal plasma. Acta Physiol Scand 116(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Arver S, Eliasson R (1982) Zinc and zinc ligands in human seminal plasma. II. Contribution by ligands of different origin to the zinc binding properties of human seminal plasma. Acta Physiol Scand 115(2):217–224

    Article  PubMed  CAS  Google Scholar 

  • Bal W, Dyba M, Szewczuk Z, Jezowska-Bojczuk M et al (2001) Differential zinc and DNA binding by partial peptides of human protamine HP2. Mol Cell Biochem 222(1–2):97–106

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8(9):227

    Article  PubMed  Google Scholar 

  • Barney GH, Orgebin-Crist MC, Macapinalac MP (1968) Genesis of esophageal parakeratosis and histologic changes in the testes of the zinc-deficient rat and their reversal by zinc repletion. J Nutr 95(4):526–534

    PubMed  CAS  Google Scholar 

  • Bench G, Corzett MH, Kramer CE et al (2000) Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol Reprod Dev 56(4):512–519

    Article  PubMed  CAS  Google Scholar 

  • Björndahl L, Kvist U (1985) Loss of an intrinsic capacity for human sperm chromatin decondensation. Acta Physiol Scand 124(2):189–194

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (1990) Influence of seminal vesicular fluid on the zinc content of human sperm chromatin. Int J Androl 13(3):232–237

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (2003) Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod Biomed Online 7(4):440–448

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16(1):23–29

    Article  PubMed  Google Scholar 

  • Björndahl L, Kjellberg S, Kvist U (1991) Ejaculatory sequence in men with low sperm chromatin-zinc. Int J Androl 14(3):174–178

    Article  PubMed  Google Scholar 

  • Calvin HI, Bedford JM (1971) Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl 13(Suppl 13):65–75

    PubMed  Google Scholar 

  • Calvin HI, Bleau G (1974) Zinc-thiol complexes in keratin-like structures of rat spermatozoa. Exp Cell Res 86(2):280–284

    Article  PubMed  CAS  Google Scholar 

  • Calvin HI, Yu CC, Bedford JM (1973) Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa. Exp Cell Res 81(2):333–341

    Article  PubMed  CAS  Google Scholar 

  • Fisch H, Lambert SM, Goluboff ET (2006) Management of ejaculatory duct obstruction: etiology, diagnosis, and treatment. World J Urol 24(6):604–610. doi:10.1007/s00345-006-0129-4

    Article  PubMed  Google Scholar 

  • From Björk M, Björndahl L, Zakeri A et al (2009) Can sperm chromatin packaging influence results of sperm DNA integrity measures? Results of the TUNEL assay. J Androl March/April Supplement: 34th annual meeting of the American Society of Andrology, Philadelphia, p 40

    Google Scholar 

  • Gusse M, Sautiere P, Belaiche D et al (1986) Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 884(1):124–134. doi:0304-4165(86)90235-7 [pii]

    Google Scholar 

  • Kjellberg S (1993) Zinc and human sperm chromatin. Ph.D. thesis, University of Linköping, Linköping

    Google Scholar 

  • Kvist U (1980a) Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol Scand 109(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Kvist U (1980b) Sperm nuclear chromatin decondensation ability. An in vitro study on ejaculated human spermatozoa. Acta Physiol Scand 486:1–24

    CAS  Google Scholar 

  • Kvist U, Björndahl L (1985) Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiol Scand 124(2):195–200

    Article  PubMed  CAS  Google Scholar 

  • Kvist U, Eliasson R (1978) Zinc dependent chromatin stability in human ejaculated spermatozoa. Int J Androl Suppl 1:178

    Google Scholar 

  • Kvist U, Afzelius BA, Nilsson L (1980) The intrinsic mechanism of chromatin decondensation ability and its activation in human spermatozoa. Dev Growth Differ 22:543–554

    Article  CAS  Google Scholar 

  • Kvist U, Björndahl L, Roomans GM et al (1985) Nuclear zinc in human epididymal and ejaculated spermatozoa. Acta Physiol Scand 125(2):297–303

    Article  PubMed  CAS  Google Scholar 

  • Lundquist F (1949) Aspects of the biochemistry of human semen. Acta Physiol Scand 19(Suppl 66):1–108

    Google Scholar 

  • Pettersson G, From Björk M, Björndahl L et al (2009) Can sperm chromatin packaging influence results of sperm DNA integrity measures? Results from acridin orange flow cytometry. J Androl March/April Supplement: 9th International Congress of Andrology, Barcelona: pp 108–109

    Google Scholar 

  • Roomans GM, Lundevall E, Björndahl L et al (1982) Removal of zinc from subcellular regions of human spermatozoa by EDTA treatment studied by X-ray microanalysis. Int J Androl 5(5):478–486

    Article  PubMed  CAS  Google Scholar 

  • Tu J, Björndahl L, Kvist U (2009) Can sperm chromatin packaging influence results of sperm DNA integrity measures? Results of the Comet assay. J Androl March/April Supplement: 34th annual meeting of the American Society of Andrology, Philadelphia:42

    Google Scholar 

  • Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16(1):30–36

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen, 5th edn. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Björndahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Björndahl, L., Kvist, U. (2014). Structure of Chromatin in Spermatozoa. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 791. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7783-9_1

Download citation

Publish with us

Policies and ethics