Skip to main content

Spermatozoal Chromatin Structure: Role in Sperm Functions and Fertilization

  • Chapter
  • First Online:
Genetics of Male Infertility

Abstract

It is well known that sperm is a vehicle that delivers the haploid paternal genome to the oocyte and that an intact and complete genetic material is required for normal embryo development. During spermiogenesis, the formation of mature spermatozoa results in an extreme compacted DNA in sperm nucleus with respect to somatic nucleus. To reach such compaction, a dramatic reorganization occurs in developing spermatids where the vast majority of somatic histones are replaced by small basic proteins called protamines. The improper histone replacement or a deficient protamination may not only be a marker of abnormal spermiogenesis but also affect oocyte fertilization and reproductive outcomes. The paternal genome is considered to be inactive, and the role of retained histones emerged in recent studies demonstrating that sperm histones inherited by the embryo deliver epigenetic marks involved in the activation of key genes of embryogenesis. Consequently, the chromatin status of spermatozoa may affect not only the process of oocyte fertilization but also the development and the health of the offspring indicating that the role of sperm chromatin is more complex than previously believed. In this chapter, we illustrate the sperm chromatin structure and organization. Additionally, we describe in details the sperm chromatin abnormalities frequently found in human mature spermatozoa and their possible causes. We also review the evidences reported in literature regarding the association between sperm DNA abnormalities and male infertility as well as natural and assisted reproduction outcomes.

Finally, we depict the actual tests used in the research laboratories to detect such sperm chromatin anomalies in order to better understand their potential and clinical application in the routine practice for the diagnosis of male reproductive health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember. Biol Reprod. 2017;97(6):784–97.

    Article  PubMed  Google Scholar 

  2. Gross DS, Chowdhary S, Anandhakumar J, Kainth AS. Chromatin. Curr Biol. 2015;25(24):R1158–63. Erratum in: Curr Biol. 2016 Feb 22;26(4):556.

    Article  CAS  PubMed  Google Scholar 

  3. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ward WS. Organization of sperm DNA by the nuclear matrix. Am J Clin Exp Urol. 2018;6(2):87–92. Review.

    PubMed  PubMed Central  Google Scholar 

  5. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6. Review.

    Article  CAS  PubMed  Google Scholar 

  6. Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273–9. Review.

    Article  PubMed  Google Scholar 

  7. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    Article  CAS  PubMed  Google Scholar 

  8. Oliva R, Mezquita C. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry. 1986;25(21):6508–11.

    Article  CAS  PubMed  Google Scholar 

  9. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004;271(17):3459–69. Review.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004;38(4):200–13.

    Article  CAS  PubMed  Google Scholar 

  12. Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, et al. Haploinsufficiency of protamine-1 or −2 causes infertility in mice. Nat Genet. 2001;28(1):82–6.

    CAS  PubMed  Google Scholar 

  14. Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  15. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. Review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    CAS  PubMed  Google Scholar 

  17. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265(33):20662–6.

    CAS  PubMed  Google Scholar 

  18. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–7. Epub 2003 May 29.

    Article  CAS  PubMed  Google Scholar 

  19. Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55(4):789–95.

    Article  CAS  PubMed  Google Scholar 

  20. Ogura A, Matsuda J, Yanagimachi R. Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci U S A. 1994;91(16):7460–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet. 2014;10(5):e1004317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell. 2014;30(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. Adv Exp Med Biol. 2014;791:53–66. Review.

    Article  PubMed  CAS  Google Scholar 

  25. Ly L, Chan D, Trasler JM. Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol. 2015;43:96–105.. Review

    Article  CAS  PubMed  Google Scholar 

  26. Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311(2):592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li T, Vu TH, Ulaner GA, Littman E, Ling JQ, Chen HL, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11(9):631–40.

    Article  CAS  PubMed  Google Scholar 

  28. Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  29. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22.. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    CAS  PubMed  Google Scholar 

  31. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72.

    Article  PubMed  Google Scholar 

  32. Francis S, Yelumalai S, Jones C, Coward K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum Fertil (Camb). 2014;17(2):80–9. Review.

    Article  Google Scholar 

  33. de Yebra L, Ballescá JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.

    Article  PubMed  Google Scholar 

  34. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  36. Jodar M, Oriola J, Mestre G, Castillo J, Giwercman A, Vidal-Taboada JM, et al. Polymorphisms, haplotypes and mutations in the protamine 1 and 2 genes. Int J Androl. 2011;34(5 Pt 1):470–85.. Review

    Article  CAS  PubMed  Google Scholar 

  37. Aoki VW, Liu L, Carrell DT. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod. 2006a;12(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  38. Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448–52.

    Article  CAS  PubMed  Google Scholar 

  39. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.

    Article  CAS  PubMed  Google Scholar 

  40. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23(6):724–34.

    Article  CAS  PubMed  Google Scholar 

  41. Marchiani S, Tamburrino L, Olivito B, Betti L, Azzari C, Forti G, et al. Characterization and sorting of flow cytometric populations in human semen. Andrology. 2014;2(3):394–401.

    Article  CAS  PubMed  Google Scholar 

  42. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21:109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37(2):109–28. Review.

    CAS  PubMed  Google Scholar 

  44. Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789–99.. Review

    Article  CAS  PubMed  Google Scholar 

  45. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7. Review.

    Article  CAS  PubMed  Google Scholar 

  46. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    Article  CAS  PubMed  Google Scholar 

  47. Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol. 2011;45(4):403–9.

    Article  CAS  PubMed  Google Scholar 

  48. Rahimipour M, Talebi AR, Anvari M, Sarcheshmeh AA, Omidi M. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur J Obstet Gynecol Reprod Biol. 2013;170(2):423–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hammadeh ME, Hamad MF, Montenarh M, Fischer-Hammadeh C. Protamine contents and P1/P2 ratio in human spermatozoa from smokers and non-smokers. Hum Reprod. 2010;25(11):2708–20.

    Article  CAS  PubMed  Google Scholar 

  50. Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, et al. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril. 2014;101(1):51–57.e1.

    Article  CAS  PubMed  Google Scholar 

  51. Cunningham KA, Beagley KW. Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod. 2008;79(2):180–9.. Review

    Article  CAS  PubMed  Google Scholar 

  52. Zeyad A, Hamad MF, Hammadeh ME. The effects of bacterial infection on human sperm nuclear protamine P1/P2 ratio and DNA integrity. Andrologia. 2018;50:e12841.

    Article  CAS  Google Scholar 

  53. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin's lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23(5):1044–52.

    Article  PubMed  CAS  Google Scholar 

  54. O'Flaherty CM, Chan PT, Hales BF, Robaire B. Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2012;33(4):629–36.

    Article  PubMed  Google Scholar 

  55. Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK. Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology. 2018;6(6):829–35.

    Article  CAS  PubMed  Google Scholar 

  56. Tamburrino L, Cambi M, Marchiani S, Manigrasso I, Degl’Innocenti S, Forti G, et al. Sperm DNA fragmentation in cryopreserved samples from subjects with different cancers. Reprod Fertil Dev. 2017;29(4):637–45.

    Article  CAS  PubMed  Google Scholar 

  57. Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe S, et al. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep. 2016;6:27409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schneider S, Balbach M, Jan F Jikeli, Fietz D, Nettersheim D, Jostes S, et al. Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep. 2016;6:36764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  60. Khara KK, Vlad M, Griffiths M, Kennedy CR. Human protamines and male infertility. J Assist Reprod Genet. 1997;14(5):282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mengual L, Ballescá JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl. 2003;24(3):438–47.

    Article  PubMed  Google Scholar 

  62. Rogenhofer N, Dansranjavin T, Schorsch M, Spiess A, Wang H, von Schönfeldt V, et al. The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum Reprod. 2013;28(4):969–78.

    Article  CAS  PubMed  Google Scholar 

  63. de Mateo S, Gázquez C, Guimerà M, Balasch J, Meistrich ML, Ballescà JL, et al. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715–22.

    Article  PubMed  CAS  Google Scholar 

  64. Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.

    Article  PubMed  Google Scholar 

  65. Talebi AR, Vahidi S, Aflatoonian A, Ghasemi N, Ghasemzadeh J, Firoozabadi RD, et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia. 2012;44(Suppl 1):462–70.

    Article  PubMed  CAS  Google Scholar 

  66. Irez T, Sahmay S, Ocal P, Goymen A, Senol H, Erol N, et al. Investigation of the association between the outcomes of sperm chromatin condensation and decondensation tests, and assisted reproduction techniques. Andrologia. 2015;47(4):438–47.

    Article  CAS  PubMed  Google Scholar 

  67. Khalili MA, Nazari S, Dehghani-Firouzabadi R, Talebi A, Baghazadeh-Naeini S, Sadeghian-Nodoshan F, et al. Comparing the roles of sperm chromatin integrity and apoptosis in intrauterine insemination outcomes of couples with mild male and female factor infertility. J Reprod Infertil. 2014;15(1):35–40.

    PubMed  PubMed Central  Google Scholar 

  68. Marchiani S, Tamburrino L, Benini F, Fanfani L, Dolce R, Rastrelli G, et al. Chromatin Protamination and Catsper expression in spermatozoa predict clinical outcomes after assisted reproduction programs. Sci Rep. 2017;7(1):15122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29(5):904–17.

    Article  CAS  PubMed  Google Scholar 

  70. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006b;27(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  71. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85. Review.

    Article  PubMed  Google Scholar 

  72. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  73. Bungum M. Sperm DNA integrity assessment: a new tool in diagnosis and treatment of fertility. Obstet Gynecol Int. 2012;2012:531042.

    Article  PubMed  CAS  Google Scholar 

  74. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7. Review.

    Article  CAS  PubMed  Google Scholar 

  75. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17. Review.

    Article  CAS  PubMed  Google Scholar 

  76. Simon L, Aston KI, Emery BR, Hotaling J, Carrell DT. Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance. Andrologia. 2017;49(2)

    Article  CAS  Google Scholar 

  77. Hammadeh ME, Stieber M, Haidl G, Schmidt W. Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia. 1998;30(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  78. Hamad MF, Shelko N, Kartarius S, Montenarh M, Hammadeh ME. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology. 2014;2(5):666–77.

    Article  CAS  PubMed  Google Scholar 

  79. Depa-Martynow M, Kempisty B, Jagodziński PP, Pawelczyk L, Jedrzejczak P. Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol. 2012;12(1):57–72.

    Article  PubMed  Google Scholar 

  80. McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125(5):625–33. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Sheng J, Sha J, Han X. The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol. 2008;26(3–4):239–45.

    Article  CAS  PubMed  Google Scholar 

  82. Pizzol D, Bertoldo A, Foresta C. Male infertility: biomolecular aspects. Biomol Concepts. 2014;5(6):449–56. https://doi.org/10.1515/bmc-2014-0031. Review.

    Article  CAS  PubMed  Google Scholar 

  83. Iranpour FG. Impact of sperm chromatin evaluation on fertilization rate in intracytoplasmic sperm injection. Adv Biomed Res. 2014;3:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nasr-Esfahani MH, Razavi S, Mardani M. Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet. 2001;18(4):219–25.

    Article  CAS  PubMed  Google Scholar 

  85. Nasr-Esfahani MH, Salehi M, Razavi S, Anjomshoa M, Rozbahani S, Moulavi F, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  86. Razavi S, Nasr-Esfahani MH, Mardani M, Mafi A, Moghdam A. Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia. 2003;35(4):238–43.

    Article  CAS  PubMed  Google Scholar 

  87. Mangoli E, Khalili MA, Talebi AR, Ghasemi-Esmailabad S, Hosseini A. Is there any correlation between sperm parameters and chromatin quality with embryo morphokinetics in patients with male infertility? Andrologia. 2018;50(5):e12997.

    Article  CAS  PubMed  Google Scholar 

  88. Sadeghi MR, Hodjat M, Lakpour N, Arefi S, Amirjannati N, Modarresi T, et al. Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection. Avicenna J Med Biotechnol. 2009;1(3):173–80.

    PubMed  PubMed Central  Google Scholar 

  89. Nijs M, Creemers E, Cox A, Franssen K, Janssen M, Vanheusden E, et al. Chromomycin A3 staining, sperm chromatin structure assay and hyaluronic acid binding assay as predictors for assisted reproductive outcome. Reprod Biomed Online. 2009;19(5):671–84.

    Article  CAS  PubMed  Google Scholar 

  90. Irez T, Dayioglu N, Alagöz M, Karatas S, Güralp O. The use of aniline blue chromatin condensation test on prediction of pregnancy in mild male factor and unexplained male infertility. Andrologia. 2018;19:e13111.

    Article  CAS  Google Scholar 

  91. Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, et al. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell. 2018;31(3):220–31.

    Article  PubMed  Google Scholar 

  92. Asmarinah, Syauqy A, Umar LA, Lestari SW, Mansyur E, Hestiantoro A, et al. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Syst Biol Reprod Med. 2016;62(5):309–16.

    Article  CAS  PubMed  Google Scholar 

  93. Nasr-Esfahani MH, Salehi M, Razavi S, Mardani M, Bahramian H, Steger K, et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online. 2004;9(6):652–8.

    Article  CAS  PubMed  Google Scholar 

  94. Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006c;86(5):1408–15.

    Article  CAS  PubMed  Google Scholar 

  95. Fournier C, Labrune E, Lornage J, Soignon G, Giscard d'Estaing S, Guérin JF, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6(3):436–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Baldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marchiani, S., Tamburrino, L., Muratori, M., Baldi, E. (2020). Spermatozoal Chromatin Structure: Role in Sperm Functions and Fertilization. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics