Skip to main content

Stem Cells and Tissue Engineering in Burns and Wounds

  • Chapter
  • First Online:
Stem Cells Handbook

Abstract

Skin is the largest tissue of the human body, and it acts as a protective barrier. If this barrier is lost due to injury wound healing is initiated, which is a complex repair process of orchestrated phases with the goal to restore homeostasis. Burns represent one of the most devastating traumas in which skin wound healing is crucial for survival. As current practices are associated with failures, new avenues were explored to accelerate and improve the healing process, e.g., stem cells. Stem cells are normally present in the cutaneous tissue, and play an important role in skin layers renewal and wound healing processes. Others and we propose that characterization of skin resident stem cells is the first step to further develop regenerative medicine-based treatments for tissue repair. Skin tissue engineering is an innovative field which contributes to apply new biomaterials and stem cells from the lab to the bench side, with an important role in translational medicine and skin tissue repair. The aim of this chapter is to describe the basics of the human skin and wound healing, and analyze skin stem cells in normal and pathological processes, focusing on skin tissue engineering research applied to aid in tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff K, Goldsmith LA, Katz SI, Gilchrest B, Paller A, Leffell D. Fitzpatrick’s dermatology in general medicine. New York: McGraw Hill; 2007.

    Google Scholar 

  2. Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4:413–37.

    Article  PubMed  CAS  Google Scholar 

  3. Linares HA. From wound to scar. Burns. 1996;22:339–52.

    Article  PubMed  CAS  Google Scholar 

  4. Roh C, Lyle S. Cutaneous stem cells and wound healing. Pediatr Res. 2006;59:100R–3.

    Article  PubMed  Google Scholar 

  5. Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol. 2005;124:867–76.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.

    Article  PubMed  CAS  Google Scholar 

  7. Habif TP. Clinical dermatology: a color guide to diagnosis and therapy. St. Louis: Mosby; 2003.

    Google Scholar 

  8. Souto LR, Rehder J, Vassallo J, Cintra ML, Kraemer MH, Puzzi MB. Model for human skin reconstructed in vitro composed of associated dermis and epidermis. Sao Paulo Med J. 2006;124:71–6.

    Article  PubMed  Google Scholar 

  9. Plikus MV. New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence. J Invest Dermatol. 2012;132:1321–4.

    Article  PubMed  CAS  Google Scholar 

  10. Arno A, Smith A, Blit PH, Al Shehad M, Gauglitz GG, Jeschke MG. Stem cell therapy: a new treatment for burns? Pharmaceuticals. 2011;4:1355–80.

    Article  CAS  Google Scholar 

  11. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411–7.

    Article  PubMed  CAS  Google Scholar 

  12. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 2003;17:1189–200.

    Article  PubMed  CAS  Google Scholar 

  13. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.

    Article  PubMed  CAS  Google Scholar 

  14. Morris RJ, Potten CS. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol. 1999;112:470–5.

    Article  PubMed  CAS  Google Scholar 

  15. Lyle S, hristofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci. 1998;111(Pt 21):3179–88.

    PubMed  CAS  Google Scholar 

  16. Cha J, Falanga V. Stem cells in cutaneous wound healing. Clin Dermatol. 2007;25:73–8.

    Article  PubMed  Google Scholar 

  17. Ladak A, Tredget EE. Pathophysiology and management of the burn scar. Clin Plast Surg. 2009;36:661–74.

    Article  PubMed  Google Scholar 

  18. Brown DL, Borschel GH. Michigan manual of plastic surgery. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  19. Zhang CP, Fu XB. Therapeutic potential of stem cells in skin repair and regeneration. Chin J Traumatol. 2008;11:209–21.

    PubMed  CAS  Google Scholar 

  20. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17:153–62.

    Article  PubMed  Google Scholar 

  21. Adzick NS, Lorenz HP. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg. 1994;220:10–8.

    Article  PubMed  CAS  Google Scholar 

  22. Barbul A. Immune aspects of wound repair. Clin Plast Surg. 1990;17:433–42.

    PubMed  CAS  Google Scholar 

  23. Beanes SR, Dang C, Soo C, Ting K. Skin repair and scar formation: the central role of TGF-beta. Expert Rev Mol Med. 2003;5:1–22.

    Article  PubMed  Google Scholar 

  24. Butler KL, Goverman J, Ma H, Fischman A, Yu YM, Bilodeau M, Rad AM, et al. Stem cells and burns: review and therapeutic implications. J Burn Care Res. 2010;31:874–81.

    Article  PubMed  Google Scholar 

  25. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279:1528–30.

    Article  PubMed  CAS  Google Scholar 

  26. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    Article  PubMed  CAS  Google Scholar 

  27. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581–7.

    PubMed  CAS  Google Scholar 

  28. Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne JP, Dani C, et al. Reconstituted skin from murine embryonic stem cells. Curr Biol. 2003;13:849–53.

    Article  PubMed  CAS  Google Scholar 

  29. Aberdam D. Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. Int J Dev Biol. 2004;48: 203–6.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  32. Salewski RP, Eftekharpour E, Fehlings MG. Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury? J Cell Physiol. 2010;222:515–21.

    PubMed  CAS  Google Scholar 

  33. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  PubMed  CAS  Google Scholar 

  34. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  35. Mansilla E, Marin GH, Drago H, Sturla F, Salas E, Gardiner C, Bossi S, et al. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 2006;38:967–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Article  PubMed  CAS  Google Scholar 

  37. Wang HS, Hung SC, Peng ST, Huang CC, Wie HM, Guo YJ, Fu YS, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330–7.

    Article  PubMed  Google Scholar 

  38. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23:220–9.

    Article  PubMed  Google Scholar 

  39. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19:491–502.

    Article  PubMed  CAS  Google Scholar 

  40. Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26:591–9.

    Article  PubMed  Google Scholar 

  41. Barry FP, Murphy JM, English K, Mahon BP. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev. 2005;14:252–65.

    Article  PubMed  CAS  Google Scholar 

  42. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13:1299–312.

    Article  PubMed  CAS  Google Scholar 

  43. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–59.

    Article  PubMed  CAS  Google Scholar 

  44. McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, et al. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen. 2006;14:471–8.

    Article  PubMed  Google Scholar 

  45. Kwon DS, Gao X, Liu YB, Dulchavsky DS, Danyluk AL, Bansal M, Chopp M, et al. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J. 2008;5:453–63.

    Article  PubMed  Google Scholar 

  46. Kim SS, Song CK, Shon SK, Lee KY, Kim CH, Lee MJ, Wang L. Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits. Cell Tissue Res. 2009;336:59–66.

    Article  PubMed  Google Scholar 

  47. Stoff A, Rivera AA, Sanjib Banerjee N, Moore ST, Michael Numnum T, Espinosa-de-Los-Monteros A, Richter DF, et al. Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol. 2009;18:362–9.

    Article  PubMed  Google Scholar 

  48. Nakagawa H, Akita S, Fukui M, Fujii T, Akino K. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol. 2005;153:29–36.

    Article  PubMed  CAS  Google Scholar 

  49. Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, et al. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007;15:350–9.

    Article  PubMed  Google Scholar 

  50. Altman AM, Matthias N, Yan Y, Song YH, Bai X, Chiu ES, Slakey DP, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials. 2008;29: 1431–42.

    Article  PubMed  CAS  Google Scholar 

  51. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196:245–50.

    Article  PubMed  CAS  Google Scholar 

  52. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003;139:510–6.

    Article  PubMed  Google Scholar 

  53. Li H, Fu X, Ouyang Y, Cai C, Wang J, Sun T. Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res. 2006;326:725–36.

    Article  PubMed  CAS  Google Scholar 

  54. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3:e1886.

    Article  PubMed  Google Scholar 

  55. Ichioka S, Kouraba S, Sekiya N, Ohura N, Nakatsuka T. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience. Br J Plast Surg. 2005;58:1124–30.

    Article  PubMed  Google Scholar 

  56. Kirana S, Stratmann B, Lammers D, Negrean M, Stirban A, Minartz P, Koerperich H, et al. Wound therapy with autologous bone marrow stem cells in diabetic patients with ischaemia-induced tissue ulcers affecting the lower limbs. Int J Clin Pract. 2007;61:690–2.

    Article  PubMed  CAS  Google Scholar 

  57. Lataillade JJ, Doucet C, Bey E, Carsin H, Huet C, Clairand I, Bottollier-Depois JF, et al. New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med. 2007;2:785–94.

    Article  PubMed  CAS  Google Scholar 

  58. Rogers LC, Bevilacqua NJ, Armstrong DG. The use of marrow-derived stem cells to accelerate healing in chronic wounds. Int Wound J. 2008;5:20–5.

    Article  PubMed  Google Scholar 

  59. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121:860–77.

    Article  PubMed  CAS  Google Scholar 

  60. Badiavas EV, Ford D, Liu P, Kouttab N, Morgan J, Richards A, Maizel A. Long-term bone marrow culture and its clinical potential in chronic wound healing. Wound Repair Regen. 2007;15:856–65.

    Article  PubMed  Google Scholar 

  61. Jain P, Perakath B, Jesudason MR, Nayak S. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Manage. 2011;57:38–44.

    PubMed  Google Scholar 

  62. Mulder GD, Lee DK, Faghihnia N. Autologous bone marrow-derived stem cells for chronic wounds of the lower extremity: a retrospective study. Wounds. 2010;22:219–25.

    Google Scholar 

  63. Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, et al. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs. 2008;32:925–31.

    Article  PubMed  Google Scholar 

  64. Wong VW, Rustad KC, Galvez MG, Neofytou E, Glotzbach JP, Januszyk M, Major MR, et al. Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng Part A. 2011;17:631–44.

    Article  PubMed  CAS  Google Scholar 

  65. Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, et al. Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci. 2011;11:1458–66.

    PubMed  CAS  Google Scholar 

  66. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009; 12(5): 359-66.

    PubMed  CAS  Google Scholar 

  67. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, Nandrean SG, Götting C, Minartz P. Kleesiek K, Tschoepe D. Autologlous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 2012; 66[4): 384-93.

    PubMed  CAS  Google Scholar 

  68. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiaion into multiple skin cell type. J Immunol 2008; 180[4): 2581-7.

    PubMed  CAS  Google Scholar 

  69. Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, Beggs K, Malik AA, Flake AW. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007;15(3):350-9.

    PubMed  CAS  Google Scholar 

  70. Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 2007; 20/6): 867-76.

    PubMed  CAS  Google Scholar 

  71. Nakagawa H, Akita S, Fukui M, Fujii T, Akino K. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol. 2005; 153(1): 29-36.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (GM087285-01), the Canadian Foundation for Innovation Leader’s Opportunity Fund (# 25407), the Physicians’ Services Incorporated Foundation—Health Research Grant Program and the Canadian Military and supported by CIHR 123336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Jeschke M.D., Ph.D., F.A.C.S., F.R.C.S.C., F.C.C.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media New York

About this chapter

Cite this chapter

Blit, P.H., Arno, A.I., Jeschke, M.G. (2013). Stem Cells and Tissue Engineering in Burns and Wounds. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7696-2_28

Download citation

Publish with us

Policies and ethics