Skip to main content

Blood Flow-Induced Remodeling of the Artery Wall

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

Mature vascular tissues exhibit little evidence of tissue synthesis. Thus, under normal conditions, replication rates for endothelial and smooth muscle cells are typically 0.01% to 1% per day, and synthesis rates for the major extracellular constituents, for example, elastin and collagen, are often extremely low. The half-life for collagen in human arteries is many months, and for elastin it is years to decades. These data argue that vascular structures are extremely stable. Nonetheless, vascular tissues in individual arteries undergo substantial remodeling whenever the blood flows they carry change for more than a few days. These long-term hemodynamic changes are not rare events; they accompany menstrual cycles, pregnancy, disuse, weight gain, and many disease states. How can these apparent contradictions be reconciled?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, P. A., P. K. Kristensen, L. R. Lund, and K. Dano. Urokinase-type plasminogen activator is increased in the involuting ventral prostate of castrated rats. Endrocrinology 126: 2567–2576, 1990.

    Article  CAS  Google Scholar 

  2. Azimi, T. I., and J. D. O’Shea. Mechanism of deletion of endothelial cells during regression of the corpus luteum. Lab. Invest. 51: 206–217, 1984.

    Google Scholar 

  3. Beldekas, J. C., B. Smith, L. C. Gerstenfeld, G. E. Sonenschein, and C. Franzblau. Effects of 17b-estradiol on synthesis of collagen in cultured bovine aortic smooth muscle cells. Biochemistry 20: 2162, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Bendeck, M. P., and B. L. Langille. Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ. Res. 69: 1165–1169, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Bendeck, M. P., and B. L. Langille. Changes in blood flow distribution during the perinatal period in fetal sheep and lambs. Can. J. Physiol. Pharmacol. 70: 1576–1582, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Campbell, G. J, and M. R. Roach. Fenestrations in the internal elastic lamina at bifurcations of human cerebral arteries. Stroke 12: 489–496, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Capeless, E. L., and J. F. Clapp. Cardiovascular changes in early phase of pregnancy. Am. J. Obstet. Gynecol. 161, No. 6: 1449–1453, 1989.

    Article  CAS  Google Scholar 

  8. Chapman, W. B. The effect of the heart-beat upon the development of the vascular system in the chick. Am. J. Anat. 23: 175–203, 1918.

    Article  Google Scholar 

  9. Christ, B., R. E. Poelmann, M. M. T. Mentink, and A. C. Gittenberger-DE Groot. Vascular endothelial cells migrate centripetally within embryonic arteries. Anat. Embryol. 181: 333–339, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Clark, E. R. Studies on the growth of blood-vessels in the tail of the frog larva-by observation and experiment on the living animal. Am. J. Anat. 23: 37–88, 1918.

    Article  Google Scholar 

  11. Clowes, A. W., M. M. Clowes, Y. P. T. Au, M. A. Reidy, and D. Belin. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ. Res. 67: 61–67, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Coyle, P. Interruption of the middle cerebral artery in 10-day-old rat alters normal development of distal collaterals. Anat. Rec. 212: 179–182, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, JR., and M. A. Gimbrone, JR.. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Nat. Acad. Sci. U.S.A. 83: 2114–2117, 1986.

    Article  CAS  Google Scholar 

  14. Dewey, C. F., JR., S. R. BussoLari, M. A. Gimbrone, JR., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103: 177–185, 1981.

    Article  PubMed  Google Scholar 

  15. Diamond, S. L., S. G. Eskin, and L. V. Mcintire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Duling, B. R., R. D. Hogan, B. L. Langille, P. Lelkes, S. S. Segal, S. F. Vatner, H. Weigelt, and M. A. Young. Vasomotion control: Functional hyperemia and beyond. Federation Proc. 46: 251–263, 1987.

    CAS  Google Scholar 

  17. Dull, R. O., and P. F. Davies. Flow modulation of agonist (Atp)-response (Ca“) coupling in vascular endothelial cells. Am. J. Physiol. (Heart Circ. Physiol. 30 ) 261: H149 - H154, 1991.

    Google Scholar 

  18. Fry, D. L. Acute vascular endothelial cell changes associated with blood velocity gradients. Circ. Res. 22: 165–197, 1968.

    Article  PubMed  CAS  Google Scholar 

  19. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. New Engl. J. Med. 316: 1371–1375, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Gotlieb, A. I., L. Mcburnie May, L. Subrahmanyan, and V. I. Kalnins. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell Biol. 91: 589–594, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Gow, B. S., W.-Y. Yu, L. L. Lee, U. Kukongviriyapan, and S. E. Greenwald. Does vibration cause post-stenotic dilatation of arteries in vivo? First World Congress of Biomechanics II: 44, 1990. (Abstract)

    Google Scholar 

  22. Hart, M. V, L. Baskin, D. Mendelson, K. Thornburg, and M. Morton. Aortic size and compliance are increased during pregnancy in the guinea pig. Clin. Res. 35: 179A, 1987.

    Google Scholar 

  23. Hart, M. V., J. D. Hosenpud, A. R. Hohimer, and M. J. Morton. Hemodynamics during pregnancy and sex steroid administration in guinea pigs. Am. J. Physiol. 249 (Regulatory Integrative. Comp. Physiol. 18 ): R179 - R185, 1985.

    Google Scholar 

  24. Hart, M. V., M. J. Morton, J. D. Hosenpud, and J. Metcalfe. Aortic function during normal human pregnancy. Am. J. Obstet. Gynecol. 154: 887–891, 1986.

    CAS  Google Scholar 

  25. Heuser, C. H. The branchial vessels and their derivatives in the pig. Contr. Embryol. 15: 121–139, 1923.

    Google Scholar 

  26. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cycloogenase inhibition. J. Cardiovas. Pharmacol. 6: 1161–1169, 1984.

    CAS  Google Scholar 

  27. Hsieh, H.-J., N.-Q. LI, and J. A. Frangos. Shear stress increases endothelial platelet-derived growth factor mRna levels. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H642 - H646, 1991.

    Google Scholar 

  28. Imataka, K., A. Seki, S. ToMono, N. Takahashi, and J. Fujii. Experimental production of poststenotic dilatation in the carotid arteries of rabbits. Jpn. Heart J. 22: 127–133, 1981.

    CAS  Google Scholar 

  29. Jamal, A., M. Bendeck, and B. L. Langille. Structural changes and recovery of function after arterial injury. Arteriosclerosis and Thrombosis 12: 307–317, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Kagan, H. M., C. A. Vaccaro, R. E. Bronson, S.-S. Tang, and J. S. Brody. Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue. J. Cell. Biol. 103: 1121–1128, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Kaiser, L., S. S. Hull, JR., and H. V. Sparks, JR. Methylene blue and Etya block flow-dependent dilation in canine femoral artery. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H974 - H981, 1986.

    Google Scholar 

  32. Kaiserman-Abramof, I. R., and H. A. Padykula. Angiogenesis in the postovulatory primate endometrium: The coiled arteriolar system. Anat. Rec. 224: 479–489, 1989.

    Article  Google Scholar 

  33. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239 (Heart Circ. Physiol. 8 ): H14 - H21, 1980.

    Google Scholar 

  34. Kim, D. W., A. I. Gotlieb, and B. L. Langille. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9: 439–445, 1989.

    Google Scholar 

  35. Kim, D. W., B. L. Langille, M. K. K. Wong, and A. I. Gotlieb. Patterns of endothelial microfilament distribution in the rabbit aorta in situ. Circ. Res. 64: 21–31, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Kohler, T. R., and A. Jawien. Flow affects development of intimal hyperplasia after arterial injury in rats. Arteriosclerosis and Thrombosis 12: 963–971, 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Kohler, T. R., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res. 69: 1557–1565, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Koller, A., and G. Kaley. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 67: 529–534, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Krystosek, A., and N. W. Seeds. Plasminogen activator release at the neuronal growth cone. Science 213: 1532–1534, 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Kukongviriyapan, U., and B. S. Gow. Morphometric analyses of rabbit thoracic aorta after poststenotic dilatation. Circ. Res. 65: 1774–1786, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Langille, B. L. Hemodynamic factors and vascular disease. In Cardiovascular Pathology, M. D. Silver, ed. New York: Churchill Livingstone, 1991, pp. 131–154.

    Google Scholar 

  42. Langille, B. L. Blood flow-induced remodeling of arteries in health and disease. Cardiovas. Pathol. 1: 245–251, 1992.

    Article  Google Scholar 

  43. Langille, B. L. Remodeling of mature and developing arteries: role of endothelium, smooth muscle and matrix. J. Cardiovas. Pharmacol. 21: 511–517, 1993.

    Article  Google Scholar 

  44. Langille, B. L., and S. L. Adamson. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48: 481–488, 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Langille, B L, M. P. Bendeck, and F. W. Keeley. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256: H931 - H939, 1989.

    CAS  Google Scholar 

  46. Langille, B. L., and R. D. Brownlee. Arterial adaptations to altered blood flow. Can. J. Physiol. Pharmacol. 69: 978–983, 1991.

    Article  PubMed  Google Scholar 

  47. Langille, B. L., R. D. Brownlee, and S. L. Adamson. Perinatal aortic growth in lambs: Relation to blood flow changes at birth. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H1247 - H1253, 1990.

    Google Scholar 

  48. Langille, B. L., J. J. K. Graham, D. W. Kim, and A. I. Gotlieb. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arteriosclerosis 11: 1814–1820, 1991.

    Article  CAS  Google Scholar 

  49. Langille, B. L., and F. O’Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Learoyd, B. M., and M. G. Taylor. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18: 278–292, 1966.

    Article  PubMed  CAS  Google Scholar 

  51. Lehman, R. M., G. K. Owens, N. F. Kassell, and K. Hongo. Mechanism of enlargement of major cerebral collateral arteries in rabbits. Stroke 22: 499–504, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107: 341–347, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Lie, M., O. M. Sejersted, and F. Kill. Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res. 27: 727–737, 1970.

    Article  PubMed  CAS  Google Scholar 

  54. Lintilhac, P. M., and T. B. Vesecky. Stress-induced alignment of division plane in plant tissues grown in vitro. Nature Lond. 307: 363–364, 1984.

    Article  Google Scholar 

  55. Magness, R. R., and C. R. Rosenfeld. Local and systemic estradiol-17 beta: effects on uterine and systemic vasodilation. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): E536 - E542, 1989.

    Google Scholar 

  56. Majesky, M. W., M. A. Reidy, D. F. Bowen-Pope, C. E. Hart, J. N. Wilcox, and S. M. Schwartz. Pdgf ligand and receptor expression during repair of arterial injury. J. Cell. Biol. 111: 2149–2158, 1990.

    CAS  Google Scholar 

  57. Masuda, H., K. Kawamura, K. Tohda, T. Shozawa, M. Sageshima, and A. Kamiya. Increase in endothelial cell density before artery enlargement in flow-loaded canine carotid artery. Arteriosclerosis 9: 812–823, 1989.

    Article  PubMed  CAS  Google Scholar 

  58. Mcgill, H. C., JR., and P. J. Sheridan. Nuclear uptake of sex steroid hormones in the cardiovascular system of the baboon. Circ. Res. 48: 238, 1981.

    CAS  Google Scholar 

  59. Melkumyants, A. M., S. A. Balashov, and V. M. Khayutin. Control of arterial hydraulic resistance by shear stress on endothelium. First World Congress of Biomechanics II: 27, 1990 (Abstract).

    Google Scholar 

  60. Menoud, P.-A., S. Debrot, and J. Schowing. Localization of urokinase-type and tissue-type plasminogen activator mRna during organogenesis in the mouse. Roux’s Arch. Dev. Biol. 198: 219–226, 1989.

    Article  CAS  Google Scholar 

  61. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca“ signaling of vascular endothelial cells: effect of shear stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1698 - H1707, 1991.

    Google Scholar 

  62. Nichols, W. W., and M. F. O’Rourke. McDonald’s blood flow in arteries. Philadelphia: Lea and Febiger, 1990.

    Google Scholar 

  63. Ojha, M., and B. L. Langille. Evidence that turbulence is not the cause of postenotic dilatation in rabbit carotid arteries. Arteriosclerosis and Thrombosis 13: 977–984, 1993.

    Article  PubMed  CAS  Google Scholar 

  64. Olesen, S-P., D. E. Clapham, and P. F. Davies. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature Lond. 221: 168–170, 1988.

    Article  Google Scholar 

  65. Pepper, M. S., J-D. Vassalli, R. Montesano, and L. Orci. Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell Biol. 105: 2535–2541, 1987.

    Article  PubMed  CAS  Google Scholar 

  66. PoHL, U., K. Herlan, A. Huang, and E. Bassenge. Edrf-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261 (Heart Circ. Physiol.): H2016 - H2023, 1991.

    Google Scholar 

  67. PoHL, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 38–44, 1986.

    Google Scholar 

  68. Potter, R. F., and M. R. Roach. Are enlarged fenestrations in the internal elastic lamina of the rabbit thoracic aorta associated with poststenotic dilatation. Can. J. Physiol. Pharmacol. 61: 101–104, 1983.

    Article  PubMed  CAS  Google Scholar 

  69. Rannels, D. E., and S. R. Rannels. Compensatory growth of the lung following partial pneumanectomy. Exp. Lung Res. 14: 157–182, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. Resnick, N., C. F. Dewey, W. Atkinson, T. Collins, and M. A. Gimbrone, JR. Shear stress regulates endothelial Pdgf-B chain expression via induction of novel transcription factors. Faseb J. 6: A1592, 1992.

    Google Scholar 

  71. Roach, M. R. An experimental study of the production and time course of poststenotic dilatation in the femoral and carotid arteries of adult dogs. Circ. Res. 13: 537–551, 1963.

    Article  PubMed  CAS  Google Scholar 

  72. Roach, M. R. Reversibility of poststenotic dilatation in the femoral arteries of dogs. Circ. Res. 27: 985–993, 1970.

    Article  PubMed  CAS  Google Scholar 

  73. Rogers, K. A., and V. I. Kalnins. Comparison of the cytoskeleton in aortic endothelial cells in situ and in vitro. Lab. Invest. 49: 650–654, 1983.

    PubMed  CAS  Google Scholar 

  74. Rosenfeld, C. R. Distribution of cardiac output in ovine pregnancy. Am. J. Physiol. 232 (Heart Circ. Physiol. 3 ): H231 - H235, 1975.

    Google Scholar 

  75. Rychter, Z. Experimental morphology of the aortic arches and heart loop in chick embryos. Adv. Morph. 2: 333, 1962.

    Google Scholar 

  76. Sako, Y., and R. L. Varco. Arteriovenous fistula: results of management of congenital and acquired forms, blood flow measurements, and observations on proximal arterial degeneration. Surgery 63: 40, 1970.

    Google Scholar 

  77. Satcher, R., N. DE Paola, M. A. Gimbrone, JR., and C. F. Dewey, JR. Endothelial cell structure resulting from shear stress. First World Congress of Biomechanics II: 243, 1990. (Abstract)

    Google Scholar 

  78. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7: 276–286, 1987.

    Article  PubMed  CAS  Google Scholar 

  79. Schnittler, H. J., A. Wilke, T. Gress, N. Suttorp, and D. Drenkhahn. Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J. Physiol. 431: 379–401, 1991.

    Google Scholar 

  80. Schretzenmayr, A. Uber Kreislaufregulatorische Vorgange an den grossen Arterien bei der Muskelarbeit. Pflügers Archiv. Ges. Physiol. 232: 743–748, 1933.

    Article  Google Scholar 

  81. Selker, J. M. L., G. L. Steucek, and R B. Green. Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev. Biol. 153: 29–43, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. SmiesKO, V., J. KoziK, and S. Dolezel. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251, 1985.

    Google Scholar 

  83. Stephan, F. Les suppleances obtenues experimentalement dans le systeme des arcs aortiques de l’embryon d’oiseau. Comptes Rendu 36: 647–651, 1949.

    Google Scholar 

  84. Strandness, M. D., JR., and D. S. Sumner. Hemodynamics for Surgeons. New York: Grune and Stratton, 1975.

    Google Scholar 

  85. Thoma, R. Untersuchagen uberdie Histogenese und Histomechanik des Gefassystems. Stuttgart: Enke, 1893.

    Google Scholar 

  86. Vandenburgh, H. H., S. Hatfaludy, P. Karlisch, and J. Shansky. Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am. J. Physiol. 256 (Cell Physiol. 25 ): C674 - C682, 1989.

    Google Scholar 

  87. Virmani, R., A. P. Avolio, W. J. Mergner, M. Robinowitz, E. E. Herderick, J. F. Cornhill, S.-Y. Guo, T.-H. Liu, D.-Y. Ou, and M. O’Rourke. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Am. J. Pathol. 139: 1119–1129, 1991.

    CAS  Google Scholar 

  88. Walpola, P. L., A. I. Gotlieb, and P. L. Langille. Monocyte adhesion and changes in endothelial cell number, morphology and F-actin distribution elicited by low shear stress in vivo. Am. J. Pathol. 142: 1392–1400, 1992.

    Google Scholar 

  89. Wang, D. H., and R. L. Prewitt. Microvascular development under conditions of normal or reduced blood flow. Faseb J. 4: A722, 1990.

    Google Scholar 

  90. Wechezak, A. R., R. F. Viggers, and L. R. Sauvage. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab. Invest. 53: 639–647, 1985.

    PubMed  CAS  Google Scholar 

  91. Wechezak, A. R., T. N. Wight, R. F. Viggers, and L. R. Sauvage. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J. Cell. Physiol. 139: 136–146, 1989.

    Article  PubMed  CAS  Google Scholar 

  92. White, G. E., M. A. Gimbrone, JR., and K. Fujiwara. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97: 416–424, 1983.

    Article  PubMed  CAS  Google Scholar 

  93. Willemse, J. J., and L. Markus-Silvis. The shifting of the aortic origin of the brachial arteries in the metamorphosing eel Anguilla anguilla (L.), with remarks on the shifting mechanisms in arterial junctions in general. Acta Anat. 121: 216–222, 1985.

    Article  PubMed  CAS  Google Scholar 

  94. Wong, A. J., T. D. Pollard, and I. M. Herman. Actin filament stress fibers in vascular endothelial cells in vivo. Science 219: 867–869, 1983.

    Article  PubMed  CAS  Google Scholar 

  95. Wray, S. The role of mechanical and hormonal stimuli on uterine involution in the rat. J. Physiol. 328: 1–9, 1982.

    PubMed  CAS  Google Scholar 

  96. Wysolmerski, R, and D. Lagunoff. The effect of ethchlorvynol on cultured endothelial cells. A model for the study of the mechanism of increased vascular permeability. Am. J. Pathol. 119: 505–512, 1985.

    PubMed  CAS  Google Scholar 

  97. Zand, T., J. J. Nunnari, A. H. Hoffman, B. J. Savilonis, B. Macwilliams, G. Majno, and I. Joins. Endothelial adaptations in aortic stenosis. Correlation with flow parameters. Am. J. Pathol. 133: 407–418, 1988.

    PubMed  CAS  Google Scholar 

  98. Zarins, C. K., A. Runyon-Hass, M. A. Zatina, Chien-Tai Lu, and S. Glagov. Increased collagenase activity in early aneurysmal dilatation. J. Vasc. Surg. 3: 238–248, 1986.

    PubMed  CAS  Google Scholar 

  99. Zarins, C. K., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vas. Surg. 5: 413–420, 1987.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Langille, B.L. (1995). Blood Flow-Induced Remodeling of the Artery Wall. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_13

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics