Skip to main content
Log in

Vascular endothelial cells migrate centripetally within embryonic arteries

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Migration of vascular endothelial cells was traced in quail-chick chimeras. After heterospecific transplantations of quail limb bud pieces, or other tissues containing blood vessels, into the limbs or the coelomic cavity, the immunohistochemically stained endothelial cells of the quail were found to invade the chick host vessels, favouring the arteries. Within these vessels the endothelial cells regularly reach the host aorta, where they contribute to the endothelium on the ipsilateral side. It is concluded that the endothelial cells activity migrate, because microinjections of a synthetic peptide which contains the RGD-sequence and mimics fibronectin, stop the invasion of endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaupain D, Martin C, Dieterlen-Lièvre F (1979) Are developmental hemoglobin changes related to the origin of stem cells and site of erythropoiesis. Blood 53:212–225

    Google Scholar 

  • Boucaut JC, Darribère T, Poole TJ, Aoyama H, Yamada KM, Thiery JP (1984) Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphiban embryos and neural crest migration in avian embryos. J Cell Biol 99:1822–1830

    Google Scholar 

  • Brand B, Christ B, Jacob HJ (1985) An experimental analysis of the developmental capacities of distal parts of avian leg buds. Am J Anat 173:312–340

    Google Scholar 

  • Cheng Y-F, Kramer RH (1989) Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. J Cell Physiol 139:275–286

    Google Scholar 

  • Christ B, Jacob HJ (1986) Morphogenese, Musterbildung und Zell-migration als Teilprozesse der Extremitätenentwicklung bei Amniotenembryonen. Eine Synopsis experimenteller Befunde. Verh Anat Ges 80:115–126

    Google Scholar 

  • Coffin JD, Poole TJ (1988) Embryonic vascular development: immunohistochemical idenification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102:735–748

    Google Scholar 

  • Cormier F, Dieterlen-Lièvre F (1988) The wall of the chick embryoaorta harbours M-CFC, G-CFC, GM-CFC and BFM-E. Development 102:279–285

    Google Scholar 

  • Cormier F, De Paz P, Dieterlen-Lièvre F (1986) In vitro detection of cells with monocytic potentiality in the wall of the chick embryo aorta. Dev Biol 118:167–175

    Google Scholar 

  • Dossel WE (1958) Preparation of tungsten micr-needles for use in embryonic research. Lab Invest 7:171–173

    Google Scholar 

  • Ekblom P, Sariola H, Karkinen M, Saxen L (1982) The origin of the glomerular endothelium. Cell Differ 11:35–39

    Google Scholar 

  • Feinberg RN, Beebe DC (1983) Hyaluronate in vasculogenesis. Science 220:1177–1179

    Google Scholar 

  • Fujimoto T, Singer SJ (1988) Immunocytochemical studies of endothelial cells in vivo. II. Chicken aortic and capillary endothelial cells exhibit different cell surface distributions of the integrin complex. J Histochem Cytochem 36:1309–1317

    Google Scholar 

  • Gonzalez-Crussi F (1971) Vasculogenesis in the chick embryo. An ultrastructural study. Am J Anat 130:441–460

    Google Scholar 

  • Hamburger V, Hamilton HL (19512) A series of normal stages in development of the chick embryo. J Morphol 88:49–92

  • Hara K (1971) Micro-surgical operation on the chick embryo in ovo without vital staining. A modification of the intra-coelomic grafting technique. Mikroskopie 27:267–270

    Google Scholar 

  • Hertig AT (1935) Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib Embryol Carnegie Inst Washington 25:37–81

    Google Scholar 

  • Hirakow R, Hiruma T (1981) Scanning electron microscopic study on the development of primitive blood vessels in chick embryos at the early somite stage. Anat Embryol 163:299–306

    Google Scholar 

  • Hirakow R, Hiruma T (1983) TEM-studies on development and canalization of the dorsal Aorta in the chick embryo. Anat Embryol 166:307–315

    Google Scholar 

  • His W (1868) Untersuchungen über die erste Anlage des Wirbeltierleibes, Vogel, Leipzig

    Google Scholar 

  • Hodde KC (1981) Cephalic vascular patterns in the rat. Thesis, University of Amsterdam

  • Houser JN, Ackermann GA, Knouff RA (1961) Vasculogenesis and erythropoiesis in the living yolk sac of the chick embryo. A phase microscopy study. Anat Rec 140:29–43

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ, Flamme I, Britsch S, Poelmann RE (1990) The role of fibronectin and laminin in the migration of the Wolffian duct of avian embryos. Anat Embryol (submitted)

  • Jolley J (1940) Recherches sur la formation du système vasculaire de l'embryon. Arch Anat Microsc Morphol Exp 35:295–361

    Google Scholar 

  • Jotereau FV, Le Douarin NM (1978) The developmental relationship between osteocytes and osteoclasts: a study using the quailchick nuclear marker in endochondral ossification. Dev Biol 63:253–265

    Google Scholar 

  • Lawson KA (1989) Origin and clonal distribution of cells in the cranial neural tube of the mouse embryo. Cell Diff Development 27 (Suppl): 106

    Google Scholar 

  • Lawson KA, Pedersen RA (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer foundation in the mouse. Development 101:627–652

    Google Scholar 

  • Le Douarin N (1969) Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités “marquage biologique” dans les recherches sur les interactions tissulaires et les migration cellulaires an cours de l'ontogenèse. Bull Biol Fr Belg 103:435–452

    Google Scholar 

  • Matsuhashi K (1961) Electron microscopic observations of the corneal vascularization. J Clin Ophthal 15:121–127

    Google Scholar 

  • Mills AN, Haworth SG (1986) Changes in lectin binding patterns in the developing pulmonary vasculature of the pig lung. J Pathol 149:191–199

    Google Scholar 

  • Pardanaud L, Altman C, Kitos P, Dieterlen-Lièvre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    Google Scholar 

  • Pardanaud L, Yassine F, Dieterlen-Lièvre F (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:473–485

    Google Scholar 

  • Péault BM, Thiery JP, Le Douarin NM (1983) Surface markers for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 80:2976–2980

    Google Scholar 

  • Poelmann RE, Christ B, Jacob M, Jacob HJ, Verbout AJ, Zahlten RN (1988) Blocking of the fibronectin receptor affects the arrangement of mesodermal cells in the chicken embryo. J Anat 158:232–233

    Google Scholar 

  • Reagan FR (1915) Vascularization phenomena on fragments of embryonic bodies completely isolated from yolk sac entoderm. Anat Rec 9:329–341

    Google Scholar 

  • Risau W, Sariola H, Zerwes H-G, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478

    Google Scholar 

  • Rossaut J, Vijh M, Siracusa LD, Chapman VM (1983) Identification of embryonic cell lineages in histological sections of M. musculus — M. caroli chimaeras. JEEM 73:179–191

    Google Scholar 

  • Ruoslahti E (1988) Fibronectin and its receptors. Ann Rev Biochem 57:375–413

    Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Google Scholar 

  • Sariola H, Ekblom P, Lehtonen E, Saxen L (1983) Differentiation and vascularization of the metanephric kidney on the chorioallantoic membrane. Dev Biol 96:427–435

    Google Scholar 

  • Sariola H, Péault B, Le Douarin N, Buck C, Dieterlen-Lièvre F, Saxen L (1984) Extracellular matrix and capillary ingrowth in interspecific chimeric kidneys. Cell Differ 15:43–51

    Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    Google Scholar 

  • Wagner RC (1980) Endothelial cell embryology and growth. Adv Microcirc 9:45–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Dutch Heart Foundation, The Netherlands Organization for Pure Research N.W.O., the Jo Keurfonds, the Drie Lichten and the Deutsche Forschungsgemeinschaft (Ch 44/9-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, B., Poelmann, R.E., Mentink, M.M.T. et al. Vascular endothelial cells migrate centripetally within embryonic arteries. Anat Embryol 181, 333–339 (1990). https://doi.org/10.1007/BF00186905

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186905

Key words

Navigation