Skip to main content

Recent Advances in Statistical and Scaling Analysis of Earth and Environmental Variables

  • Chapter
  • First Online:
Advances in Hydrogeology

Abstract

Many earth and environmental variables appear to be self-affine (monofractal) or multifractal with Gaussian or heavy-tailed distributions. The literature considers self-affine and multifractal types of scaling to be fundamentally different, the first arising from additive and the second from multiplicative random fields or processes. Recent work by the authors demonstrates theoretically and numerically that square or absolute increments of samples from truncated fractional Brownian motion (tfBm) exhibit apparent multifractality at intermediate ranges of separation lags, with breakdown in power-law scaling at small and large lags as is commonly exhibited by data. The same is true of samples from sub-Gaussian processes subordinated to tfBm with heavy-tailed subordinators such as lognormal or Lévy, the latter leading to spurious behavior. It has been established empirically that, in numerous cases, the range of lags exhibiting power-law scaling can be enlarged significantly, at both ends of the spectrum, via a procedure known as extended self-similarity (ESS). No theoretical model of the ESS phenomenon has previously been proposed outside the domain of Burger’s equation. Our work demonstrates that ESS is consistent, at all separation scales, with sub-Gaussian processes subordinated to tfBm. This makes it possible to identify the functional form and estimate all parameters of corresponding models based solely on sample structure functions of the first and second orders. The authors’ recent work also elucidates the well-documented but heretofore little-noticed and unexplained phenomenon that whereas the frequency distribution of log permeability data often seems to be Gaussian (or nearly so), that of corresponding increments (as well as those of many other earth and environmental variables) tends to exhibit heavy tails, which sometimes narrow down with increasing separation distance or lag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler RJ, Samorodnitsky G, Taylor J (2010) Excursion sets of stable random fields. Adv Appl Probab 42:293–318

    Article  Google Scholar 

  • Benzi R, Ciliberto S, Baudet C, Chavarria GR, Tripiccione R (1993a) Extended self-similarity in the dissipation range of fully developed turbulence. Europhys Lett 24:275–279, doi:10.1209/0295–5075/24/4/007

    Article  Google Scholar 

  • Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F, Succi S (1993b) Extended self-similarity in turbulent flows. Phys Rev E 48:R29–R32, doi:10.1103/PhysRevE.48.R29

    Article  Google Scholar 

  • Benzi R, Biferale L, Ciliberto S, Struglia MV, Tripiccione R (1996) Generalized scaling in fully developed turbulence. Phys D 96:162–181, doi:10.1016/0167–2789(96)00018–8

    Google Scholar 

  • Boffetta G, Mazzino A, Vulpiani A (2008) Twenty-five years of multifractals in fully developed turbulence: a tribute to Giovanni Paladin. J Phys A Math Theory 41:363001

    Article  Google Scholar 

  • Caniego FJ, Espejo R, Martin MA, San José F (2005) Multifractal scaling of soil spatial variability. Ecol Model 182:291–303, doi:10.1016/j.ecolmodel.2004.04.014

    Article  Google Scholar 

  • Chakraborty S, Frisch U, Ray SS (2010) Extended self-similarity works for the Burgers equation and why. J Fluid Mech 649:275–285, doi:10.1017/S0022112010000595

    Article  CAS  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Di Federico V, Neuman SP (1997) Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour Res 33:1075–1085, doi:10.1029/97WR00299

    Article  Google Scholar 

  • Di Federico V, Neuman SP, Tartakovsky DM (1999) Anisotropy, lacunarity, upscaled conductivity and its covariance in multiscale fields with truncated power variograms. Water Resour Res 35(10):2891–2908

    Article  Google Scholar 

  • Fama EP, Roll R (1971) Parameter estimates for symmetric stable distribution. J Am Stat Assoc 66(334):331–338

    Article  Google Scholar 

  • Fraysse A (2007) Generic validity of the multifractal formalism. SIAM J Math Anal 39(2):593–607

    Article  Google Scholar 

  • Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  • Ganti V, Singh A, Passalacqua P, Foufoula-Georgiu E (2009) Subordinated Brownian motion model for sediment transport. Phys Rev E 80:011111, doi: 1539–5663755/ 2009/80(1)/011111(9)

    Google Scholar 

  • Gaynor GC, Chang EY, Painter S, Paterson L (2000) Application of Levy random fractal simulation techniques in modeling reservoir mechanisms in the Kuparuk River field, North Slope, Alaska. SPE Reservoir Eval Eng 3(3):263–271

    CAS  Google Scholar 

  • Goggin DJ, Chandler MA, Kocurek G, Lake LW (1989) Permeability transects in eolian sands and their use in generating random permeability fields. Soc Petrol Eng 19586:149–164

    Google Scholar 

  • Goggin DJ, Chandler MA, Kocurek G, Lake LW (1992) Permeability transects of eolian sands and their use in generating random permeability fields. SPE Form Eval 92(3):7–16

    Google Scholar 

  • Guadagnini A, Neuman SP (2011) Extended power-law scaling of self-affine signals exhibiting apparent multifractality. Geophys Res Lett 38:L13403, doi:10.1029/2011GL047727

    Article  Google Scholar 

  • Guadagnini A, Neuman SP, Riva M (2012) Numerical investigation of apparent multifractality of samples from processes subordinated to truncated fBm. Hydrol Process 26(19):2894–2908, doi:10.1002/hyp.8358

    Article  Google Scholar 

  • Guzman AG, Geddis AM, Henrich MJ, Lohrstorfer CF, Neuman SP (1996) Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the apache leap research site: results of steady-state test interpretation. NUREG/CR-6360. U.S. Nuclear Regulatory Commission, Washington, D.C

    Google Scholar 

  • Koscielny-Bunde E, Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long-term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120–137

    Article  Google Scholar 

  • Kozubowski TJ, Meerschaert MM, Podgorski K (2006) Fractional Laplace motion. Adv Appl Probab 38:451–464, doi:10.1239/aap/1151337079

    Article  Google Scholar 

  • Kozubowski TJ, Molz FJ (2011) Interactive discussion of the discussion paper “Extended power-law scaling of air permeabilities measured on a block of tuff” by Siena M, Guadagnini A, Riva M, Neuman SP. Hydrol. Earth Syst. Sci. Discuss. 8:7805–7843, doi:10.5194/hessd-8–7805–2011

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1993) Multicomponent decomposition of spatial rainfall fields: 2. Self-similarity in fluctuations. Water Resour Res 29(8):2533–2544

    Article  Google Scholar 

  • Lilley M, Lovejoy S, Desaulniers-Soury N, Schertzer D (2006) Multifractal large number of drops limit in rain. J Hydrol 328:20–37

    Article  Google Scholar 

  • Liu HH, Molz FJ (1997a) Multifractal analyses of hydraulic conductivity distributions. Water Resour Res 33:2483–2488, doi: 10.1029/ 97WR02188

    Article  Google Scholar 

  • Liu HH, Molz FJ (1997b) Comment on “Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations” by S. Painter. Water Resour Res 33:907–908, doi:10.1029/96WR03788

    Article  Google Scholar 

  • Liu K, Boult P, Painter S, Paterson L (1996) Outcrop analog for sandy braided stream reservoirs: permeability patterns in the Triassic Hawkesbury Sandstone, Sydney Basin, Australia. AAPG Bull 80(12):1850–1865

    Google Scholar 

  • Lovejoy S, Schertzer D (1995) Multifractals and rain. In: Kundzewicz AW (ed) New uncertainty concepts in hydrology and hydrological modelling. Cambridge University Press, New York, pp 61–103

    Chapter  Google Scholar 

  • Lu S, Molz FJ (2001) How well are hydraulic conductivity variations approximated by additive stable processes? Adv Environ Res 5:39–45

    Article  CAS  Google Scholar 

  • Mandelbrot B, Hudson RL (2004) The (mis)behavior of markets. Basic Books, New York, NY

    Google Scholar 

  • Meerschaert MM, Kozubowski TJ, Molz FJ, Lu S (2004) Fractional Laplace model for hydraulic conductivity. Geophys. Res. Lett. 31:L08501, doi:10.1029/2003GL019320

    Article  Google Scholar 

  • Meng H, Salas JD, Green TR, Ahuja LR (2006) Scaling analysis of space-time infiltration based on the universal multifractal model. J Hydrol 322:220–235, doi: 10.1016/j.jhydrol.2005.03.016

    Article  Google Scholar 

  • Molz FJ, Dinwiddie CL, Wilson JL (2003) A physical basis for calculating instrument spatial weighting functions in homogeneous systems. Water Resour Res 39:1096, doi: 10.1029/2001WR001220

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence. MIT Press, Cambridge, MA, 874 p

    Google Scholar 

  • Movahed MS, Hermanis E (2007) Fractal analysis of river fluctuations. Phys A 387:915–932

    Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Neuman SP (1994) Generalized scaling of permeabilities: validation and effect of support scale. Geophys Res Lett 21(5):349–352

    Article  Google Scholar 

  • Neuman SP (2010a) Apparent/spurious multifractality of data sampled from fractional Brownian/Lévy motions. Hydrol Process 24:2056–2067, doi:10.1002/hyp.7611

    Google Scholar 

  • Neuman SP (2010b) Apparent/spurious multifractality of absolute increments sampled from truncated fractional Gaussian/Lévy noise. Geophys Res Lett 37:L09403, doi:10.1029/2010GL043314

    Article  Google Scholar 

  • Neuman SP (2011) Apparent multifractality and scale-dependent distribution of data sampled from self-affine processes. Hydrol Process 25:1837–1840, doi:10.1002/hyp.7967

    Article  Google Scholar 

  • Neuman SP, Di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41:1014, doi:10.1029/2003RG000130

    Article  Google Scholar 

  • Nikora V (2005) High-order structure functions for planet surfaces: A turbulence metaphor. IEEE Geosci Remote Sens Lett 2(3):362–365

    Article  Google Scholar 

  • Nikora VI, Goring DG (2001) Extended self-similarity in geophysical and geological applications. Math Geol 33:251–271, doi:10.1023/A:1007630021716

    Article  Google Scholar 

  • Painter S (1996) Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resour Res 32:1183–1195, doi:10.1029/96WR00286

    Article  Google Scholar 

  • Painter S (2001) Flexible scaling model for use in random field simulation of hydraulic conductivity. Water Resour Res 37:1155–1163

    Article  Google Scholar 

  • Paleologos EK, Sarris TS (2011) Stochastic analysis of flux and head moments in a heterogeneous aquifer system. Stoch Env Res Risk Assess 25(6):747–759. doi: 10.1007/s00477–011–0459–7

    Article  Google Scholar 

  • Papoulis A (1984) Probability, random variables, and stochastic processes.McGraw-Hill Book Company, New York

    Google Scholar 

  • Paschalis A, Molnar P, Burlando P (2012) Temporal dependence structure in weights in a multiplicative cascade model for precipitation. Water Resour Res 48:W01501, doi: 10.1029/2011WR010679

    Article  Google Scholar 

  • Press SJ (1972) Estimation of univariate and multivariate stable distributions. J Am Stat Assoc 67(340):842–846

    Article  Google Scholar 

  • Qian J (2000) Closure approach to high-order structure functions of turbulence. Phys Rev Lett 84(4):646–649

    Article  CAS  Google Scholar 

  • Ricciardi KL, Pinder GF, Belitz K (2005) Comparison of the lognormal and beta distribution functions to describe the uncertainty in permeability. J Hydrol 313:248–256

    Article  Google Scholar 

  • Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    Google Scholar 

  • Riva M, Neuman SP, Guadagnini A (2013) Sub-Gaussian model of processes with heavy-tailed distributions applied to air permeabilities of fractured tuff. Stoch Env Res Risk Assess 27(1): 195–207, doi:10.1007/s00477-012-0576-y

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins. Cambridge University Press, Cambridge

    Google Scholar 

  • Samorodnitsky G (2006) Long memory and self-similar processes. Annales de la Faculte’ des Sciences de Toulouse 15:107–123

    Article  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-gaussian random processes. Chapman & Hall, New York

    Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92:9693–9714, doi:10.1029/JD092iD08p09693

    Article  Google Scholar 

  • Siena M, Guadagnini A, Riva M, Neuman SP (2012) Extended power-law scaling of air permeabilities measured on a block of tuff. Hydrol Earth Syst Sci 16:29–42, doi:10.5194/hess-16–29–2012

    Article  Google Scholar 

  • Singh A, Stefano L, Wilcock PR, Foufoula-Georgiou E (2011) Multiscale statistical characterization of migrating bed forms in gravel and sand bed rivers. Water Resour Res 47:W12526, doi: 10.1029/2010WR010122

    Article  Google Scholar 

  • Stumpf MPH, Porter MA (2012) Critical truths about power laws. Science 335:665–666

    Article  CAS  Google Scholar 

  • Tennekoon L, Boufadel MC, Lavallée D, Weaver J (2003) Multifractal anisotropic scaling of the hydraulic conductivity. Water Resour Res 39:1193, doi:10.1029/2002WR001645

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: Theory and observations for rain and clouds. J Appl Meteorol 32:223–250, doi:10.1175/1520–0450(1993)032 < 0223:UMTAOF > 2.0.CO;2

    Google Scholar 

  • Tidwell VC, Wilson JL (1999) Upscaling experiments conducted on a block of volcanic tuff: results for a bimodal permeability distribution. Water Resour Res 35:3375–3387, doi: 10.1029/1999WR900161

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Veneziano D, Langousis A, Furcolo P (2006) Multifractality and rainfall extremes: A review. Water Resour Res 42:W06D15, doi:10.1029/2005WR004716

    Google Scholar 

  • Yang C-Y, Hsu K-C, Chen K-C (2009) The use of the Levy-stable distribution for geophysical data analysis. Hydrogeol J 17:1265–1273, doi:10.1007/s10040–008–0411–1

    Article  Google Scholar 

  • Zeleke TB, Si BC (2006) Characterizing scale-dependent spatial relationships between soil properties using multifractal techniques. Geoderma 134:440–452, doi:10.1016/j.geoderma.2006.03.013

    Article  Google Scholar 

  • Zeleke TB, Si BC (2007) Wavelet-based multifractal analysis of field scale variability in soil water retention. Water Resour Res 43:W07446, doi: 10.1029/2006WR004957

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Yu Z, Chen YD, Liu C-L (2008) Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China. Hydrol Process 22:4997–5003, doi:10.1002/hyp.7119

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Yu Z, Liu C-L, Chen YD (2009) Multifractal analysis of streamflow records of the east River basin (Pearl River), China. Phys A 388:927–934

    Article  Google Scholar 

Download references

Acknowledgements

Our work was supported in part through a contract between the University of Arizona and Vanderbilt University under the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) III, funded by the US Department of Energy. Funding from the Politecnico di Milano (GEMINO, Progetti di ricerca 5 per mille junior) is also acknowledged. We are grateful to Vince Tidwell for sharing with us the Topopah Spring tuff block experimental database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomo P. Neuman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neuman, S.P., Guadagnini, A., Riva, M., Siena, M. (2013). Recent Advances in Statistical and Scaling Analysis of Earth and Environmental Variables. In: Mishra, P., Kuhlman, K. (eds) Advances in Hydrogeology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6479-2_1

Download citation

Publish with us

Policies and ethics