Skip to main content

Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx1 Expression in Cardiac Hypertrophy and Failure

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Abstract

Changes in cardiac gene expression contribute to the progression of heart failure by affecting cardiomyocyte growth, function, and survival. The Na+-Ca2+ exchanger gene (Ncx1) is upregulated in hypertrophy and is often found elevated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. Several transcriptional pathways mediate Ncx1 expression in pathological cardiac remodeling. Both α-adrenergic receptor (α-AR) and β-adrenergic receptor (β-AR) signaling can play a role in the regulation of calcium homeostasis in the cardiomyocyte, but chronic activation in periods of cardiac stress contributes to heart failure by mechanisms which include Ncx1 upregulation. Our studies have even demonstrated that NCX1 can directly act as a regulator of “activity-dependent signal transduction” mediating changes in its own expression. Finally, we present evidence that histone deacetylases (HDACs) and histone acetyltransferases (HATs) act as master regulators of Ncx1 expression. We show that many of the transcription factors regulating Ncx1 expression are important in cardiac development and also in the regulation of many other genes in the so-called fetal gene program, which are activated by pathological stimuli. Importantly, studies have revealed that the transcriptional network regulating Ncx1 expression is also mediating many of the other changes in genetic remodeling contributing to the development of cardiac dysfunction and revealed potential therapeutic targets for the treatment of hypertrophy and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • G.U. Ahmmed, P.H. Dong, G. Song, N.A. Ball, Y. Xu, R.A. Walsh, N. Chiamvimonvat, Changes in Ca2+ cycling proteins underlie cardiac action potential prolongation in a pressure-overloaded guinea pig model with cardiac hypertrophy and failure. Circ. Res. 86, 558–570 (2000)

    Article  PubMed  CAS  Google Scholar 

  • M.E. Anderson, Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias? Trends Cardiovasc. Med. 14, 152–161 (2004)

    Article  PubMed  CAS  Google Scholar 

  • K.V. Barnes, M.M. Dawson, D.R. Menick, Initial characterization of the feline sodium-calcium exchanger gene. Ann. N. Y. Acad. Sci. 779, 121–125 (1996)

    Article  PubMed  CAS  Google Scholar 

  • K.V. Barnes, G. Cheng, M.M. Dawson, D.R. Menick, Cloning of cardiac, kidney, and brain promoters of the feline ncx1 gene. J. Biol. Chem. 272, 11510–11517 (1997)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Bassani, D.M. Bers, Na-Ca exchange is required for rest-decay but not for rest-potentiation of twitches in rabbit and rat ventricular myocytes. J. Mol. Cell. Cardiol. 26, 1335–1347 (1994)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Bers, Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Bers, J.H. Bridge, Relaxation of rabbit ventricular muscle by Na-Ca exchange and sarcoplasmic reticulum calcium pump. Ryanodine and voltage sensitivity. Circ. Res. 65, 334–342 (1989)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Bers, W.J. Lederer, J.R. Berlin, Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258, C944–C954 (1990)

    PubMed  CAS  Google Scholar 

  • M.R. Bristow, Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101, 558–569 (2000)

    Article  PubMed  CAS  Google Scholar 

  • G. Cheng, T.P. Hagen, M.L. Dawson, K.V. Barnes, D.R. Menick, The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J. Biol. Chem. 274, 12819–12826 (1999)

    Article  PubMed  CAS  Google Scholar 

  • K.L. Golden, Q.I. Fan, B. Chen, J. Ren, J. O’Connor, J.D. Marsh, Adrenergic stimulation regulates Na+/Ca2+ exchanger expression in rat cardiac myocytes. J. Mol. Cell. Cardiol. 32, 611–620 (2000)

    Article  PubMed  CAS  Google Scholar 

  • K.L. Golden, J. Ren, J. O’Connor, A. Dean, S.E. DiCarlo, J.D. Marsh, In vivo regulation of Na/Ca exchanger expression by adrenergic effectors. Am. J. Physiol. Heart Circ. Physiol. 280, H1376–H1382 (2001)

    PubMed  CAS  Google Scholar 

  • G. Hasenfuss, H. Reinecke, R. Studer, M. Meyer, B. Pieske, J. Holtz, C. Holubarsch, H. Posival, H. Just, H. Drexler, Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ. Res. 75, 434–442 (1994)

    Article  PubMed  CAS  Google Scholar 

  • G. Hasenfuss, M. Preuss, S. Lehnart, J. Prestle, M. Meyer, H. Just, Relationship between diastolic function and protein levels of sodium-calcium-exchanger in end-stage failing human hearts. Circulation 94, I-443 (1996)

    Article  Google Scholar 

  • G. Hasenfuss, M. Meyer, W. Schillinger, M. Preuss, B. Pieske, H. Just, Calcium handling proteins in the failing human heart. Basic Res. Cardiol. 92, 87–93 (1997)

    Article  PubMed  CAS  Google Scholar 

  • G. Hasenfuss, W. Schillinger, S.E. Lehnart, M. Preuss, B. Pieske, L.S. Maier, J. Prestle, K. Minami, H. Just, Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99, 641–648 (1999)

    Article  PubMed  CAS  Google Scholar 

  • I.A. Hobai, B. O’Rourke, Enhanced Ca2+-activated Na+-Ca2+ exchange activity in canine pacing-induced heart failure. Circ. Res. 87, 690–698 (2000)

    Article  PubMed  CAS  Google Scholar 

  • I.A. Hobai, C. Maack, B. O’Rourke, Partial inhibition of sodium/calcium exchange restores cellular calcium handling in canine heart failure. Circ. Res. 95, 292–299 (2004)

    Article  PubMed  CAS  Google Scholar 

  • B. Hoch, R. Meyer, R. Hetzer, E.G. Krause, P. Karczewski, Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res. 84, 713–721 (1999)

    Article  PubMed  CAS  Google Scholar 

  • P. Karczewski, M. Kuschel, L.G. Baltas, S. Bartel, E.G. Krause, Site-specific phosphorylation of a phospholamban peptide by cyclic nucleotide- and Ca2+/calmodulin-dependent protein kinases of cardiac sarcoplasmic reticulum. Basic Res. Cardiol. 92(Suppl 1), 37–43 (1997)

    Article  PubMed  CAS  Google Scholar 

  • R.L. Kent, J.D. Rozich, P.L. McCollam, D.E. McDermott, U.F. Thacker, D.R. Menick, P.J. McDermott, G. Cooper IV, Rapid expression of the Na+-Ca2+ exchanger in response to cardiac pressure overload. Am. J. Physiol. 265, H1024–H1029 (1993)

    PubMed  CAS  Google Scholar 

  • S. Kita, T. Katsuragi, T. Iwamoto, Endothelin-1 enhances the activity of Na+/Ca2+ exchanger type 1 in renal ­epithelial cells. J. Cardiovasc. Pharmacol. 44(Suppl 1), S239–S243 (2004)

    Article  PubMed  CAS  Google Scholar 

  • P. Kofuji, W.J. Lederer, D.H. Schulze, Na/Ca exchanger isoforms expressed in kidney. Am. J. Physiol. 265, F598–F603 (1993)

    PubMed  CAS  Google Scholar 

  • S.V. Koushik, J. Bundy, S.J. Conway, Sodium-calcium exchanger is initially expressed in a heart-restricted pattern within the early mouse embryo. Mech. Dev. 88, 119–122 (1999)

    Article  PubMed  CAS  Google Scholar 

  • H.R. Lee, S.A. Henderson, R. Reynolds, P. Dunnmon, D. Yuan, K.R. Chien, Alpha 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J. Biol. Chem. 263, 7352–7358 (1988)

    PubMed  CAS  Google Scholar 

  • S.L. Lee, A.S. Yu, J. Lytton, Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852 (1994)

    PubMed  CAS  Google Scholar 

  • J.P. Lindemann, L.R. Jones, D.R. Hathaway, B.G. Henry, A.M. Watanabe, Beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J. Biol. Chem. 258, 464–471 (1983)

    PubMed  CAS  Google Scholar 

  • S.E. Litwin, J.H. Bridge, Enhanced Na+-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling. Circ. Res. 81, 1083–1093 (1997)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Lowes, E.M. Gilbert, W.T. Abraham, W.A. Minobe, P. Larrabee, D. Ferguson, E.E. Wolfel, J. Lindenfeld, T. Tsvetkova, A.D. Robertson, R.A. Quaife, M.R. Bristow, Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N. Engl. J. Med. 346, 1357–1365 (2002)

    Article  PubMed  CAS  Google Scholar 

  • A.C. MacDonald, S.E. Howlett, Differential effects of the sodium calcium exchange inhibitor, KB-R7943, on ischemia and reperfusion injury in isolated guinea pig ventricular myocytes. Eur. J. Pharmacol. 580, 214–223 (2008)

    Article  PubMed  CAS  Google Scholar 

  • L.S. Maier, D.M. Bers, Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J. Mol. Cell. Cardiol. 34, 919–939 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Mani, E.A. Egan, B.K. Addy, M. Grimm, H. Kasiganesan, T. Thiyagarajan, L. Renaud, J.H. Brown, C.B. Kern, D.R. Menick, Beta-adrenergic receptor stimulated Ncx1 upregulation is mediated via a CaMKII/AP-1 signaling pathway in adult cardiomyocytes. J. Mol. Cell. Cardiol. 48, 342–351 (2010)

    Article  PubMed  CAS  Google Scholar 

  • T.A. McKinsey, Therapeutic potential for HDAC inhibitors in the heart. Annu. Rev. Pharmacol. Toxicol. 10, 303–319 (2012)

    Article  Google Scholar 

  • D.R. Menick, K.V. Barnes, U.F. Thacker, M.M. Dawson, D.E. McDermott, J.D. Rozich, R.L. Kent, G. Cooper IV, The exchanger and cardiac hypertrophy. Ann. N. Y. Acad. Sci. 779, 489–501 (1996)

    Article  PubMed  CAS  Google Scholar 

  • S. Minucci, P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.D. Molkentin, G.W. Dorn 2nd, Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J.G. Muller, Y. Isomatsu, S.V. Koushik, M. O’Quinn, L. Xu, C.S. Kappler, E. Hapke, M.R. Zile, S.J. Conway, D.R. Menick, Cardiac-specific expression and hypertrophic upregulation of the feline Na+-Ca2+ exchanger gene H1-promoter in a transgenic mouse model. Circ. Res. 90, 158–164 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S.B. Nicholas, W. Yang, S.L. Lee, H. Zhu, K.D. Philipson, J. Lytton, Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+ exchanger gene. Am. J. Physiol. 274, H217–H232 (1998)

    PubMed  CAS  Google Scholar 

  • C.F. Niu, Y. Watanabe, K. Ono, T. Iwamoto, K. Yamashita, H. Satoh, T. Urushida, H. Hayashi, J. Kimura, Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur. J. Pharmacol. 573, 161–169 (2007)

    Article  PubMed  CAS  Google Scholar 

  • I. Nusinzon, C.M. Horvath, Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol. Cell. Biol. 26, 3106–3113 (2006)

    Article  PubMed  CAS  Google Scholar 

  • B. O’Rourke, The ins and outs of calcium in heart failure. Circ. Res. 102, 1301–1303 (2008)

    Article  PubMed  Google Scholar 

  • S. Ozdemir, V. Bito, P. Holemans, L. Vinet, J.J. Mercadier, A. Varro, K.R. Sipido, Pharmacological inhibition of Na/Ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ. Res. 102, 1398–1405 (2008)

    Article  PubMed  CAS  Google Scholar 

  • S.M. Pogwizd, M. Qi, W. Yuan, A.M. Samarel, D.M. Bers, Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ. Res. 85, 1009–1019 (1999)

    Article  PubMed  CAS  Google Scholar 

  • S.M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan, D.M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Y. Qiu, Y. Zhao, M. Becker, S. John, B.S. Parekh, S. Huang, A. Hendarwanto, E.D. Martinez, Y. Chen, H. Lu, N.L. Adkins, D.A. Stavreva, M. Wiench, P.T. Georgel, R.L. Schiltz, G.L. Hager, HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol. Cell 22, 669–679 (2006)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, C1250–C1261 (1997)

    PubMed  CAS  Google Scholar 

  • H.K. Ranu, C.M. Terracciano, K. Davia, E. Bernobich, B. Chaudhri, S.E. Robinson, Z. Bin Kang, R.J. Hajjar, K.T. MacLeod, S.E. Harding, Effects of Na+/Ca2+-exchanger overexpression on excitation-contraction coupling in adult rabbit ventricular myocytes. J. Mol. Cell. Cardiol. 34, 389–400 (2002)

    Article  PubMed  CAS  Google Scholar 

  • B.A. Rothermel, T.A. McKinsey, R.B. Vega, R.L. Nicol, P. Mammen, J. Yang, C.L. Antos, J.M. Shelton, R. Bassel-Duby, E.N. Olson, R.S. Williams, Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 3328–3333 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J. Sadoshima, S. Izumo, Molecular characterization of angiotensin II–induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 73, 413–423 (1993a)

    Article  PubMed  CAS  Google Scholar 

  • J. Sadoshima, S. Izumo, Signal transduction pathways of angiotensin II–induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ. Res. 73, 424–438 (1993b)

    Article  PubMed  CAS  Google Scholar 

  • W. Schillinger, P.M. Janssen, S. Emami, S.A. Henderson, R.S. Ross, N. Teucher, O. Zeitz, K.D. Philipson, J. Prestle, G. Hasenfuss, Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na+-Ca2+ exchanger. Circ. Res. 87, 581–587 (2000)

    Article  PubMed  CAS  Google Scholar 

  • K.R. Sipido, P.G. Volders, M.A. Vos, F. Verdonck, Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc. Res. 53, 782–805 (2002)

    Article  PubMed  CAS  Google Scholar 

  • R. Studer, H. Reinecke, J. Bilger, T. Eschenhagen, M. Bohm, G. Hasenfuss, H. Just, J. Holtz, H. Drexler, Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ. Res. 75, 443–453 (1994)

    Article  PubMed  CAS  Google Scholar 

  • R. Studer, H. Reinecke, R. Vetter, J. Holtz, H. Drexler, Expression and function of the cardiac Na+/Ca2+ exchanger in postnatal development of the rat, in experimental-induced cardiac hypertrophy and in the failing human heart. Basic Res. Cardiol. 92, 53–58 (1997)

    Article  PubMed  CAS  Google Scholar 

  • C.C. Sucharov, P.D. Mariner, K.R. Nunley, C. Long, L. Leinwand, M.R. Bristow, A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am. J. Physiol. Heart Circ. Physiol. 291, H1299–H1308 (2006)

    Article  PubMed  CAS  Google Scholar 

  • T. Takasago, T. Imagawa, M. Shigekawa, Phosphorylation of the cardiac ryanodine receptor by cAMP-dependent protein kinase. J. Biochem. 106, 872–877 (1989)

    PubMed  CAS  Google Scholar 

  • T. Tobimatsu, H. Fujisawa, Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J. Biol. Chem. 264, 17907–17912 (1989)

    PubMed  CAS  Google Scholar 

  • S.F. Vatner, D.E. Vatner, C.J. Homcy, Beta-adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsalpha overexpression and other genetically engineered animal models. Circ. Res. 86, 502–506 (2000)

    Article  PubMed  CAS  Google Scholar 

  • S. Wagner, N. Dybkova, E.C. Rasenack, C. Jacobshagen, L. Fabritz, P. Kirchhof, S.K. Maier, T. Zhang, G. Hasenfuss, J.H. Brown, D.M. Bers, L.S. Maier, Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J. Clin. Invest. 116, 3127–3138 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J. Weisser-Thomas, H. Kubo, C.A. Hefner, J.P. Gaughan, B.S. McGowan, R. Ross, M. Meyer, W. Dillmann, S.R. Houser, The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes. J. Card. Fail. 11, 380–387 (2005)

    Article  PubMed  CAS  Google Scholar 

  • L. Xu, C.S. Kappler, D.R. Menick, The role of p38 in the regulation of Na+-Ca2+ exchanger expression in adult cardiomyocytes. J. Mol. Cell. Cardiol. 38, 735–743 (2005)

    Article  PubMed  CAS  Google Scholar 

  • L. Xu, L. Renaud, J.G. Muller, C.F. Baicu, D.D. Bonnema, H. Zhou, C.S. Kappler, S.W. Kubalak, M.R. Zile, S.J. Conway, D.R. Menick, Regulation of Ncx1 expression. Identification of regulatory elements mediating cardiac-specific expression and up-regulation. J. Biol. Chem. 281, 34430–34440 (2006)

    Article  PubMed  CAS  Google Scholar 

  • X.J. Yang, S. Gregoire, Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol. 25, 2873–2884 (2005)

    Article  PubMed  CAS  Google Scholar 

  • T. Zhang, L.S. Maier, N.D. Dalton, S. Miyamoto, J. Ross Jr., D.M. Bers, J.H. Brown, The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res. 92, 912–919 (2003)

    Article  PubMed  CAS  Google Scholar 

  • G. Zupkovitz, J. Tischler, M. Posch, I. Sadzak, K. Ramsauer, G. Egger, R. Grausenburger, N. Schweifer, S. Chiocca, T. Decker, C. Seiser, Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell. Biol. 26, 7913–7928 (2006)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01HL095696 (DRM) and NIH T32HL07260 (MSL, OC, and DK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Menick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menick, D.R. et al. (2013). Transcriptional Pathways and Potential Therapeutic Targets in the Regulation of Ncx1 Expression in Cardiac Hypertrophy and Failure. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_11

Download citation

Publish with us

Policies and ethics