Skip to main content

Occurrence of Two Acetoacetyl-Coenzyme A Thiolases with Distinct Expression Patterns and Subcellular Localization in Tobacco

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

Acetoacetyl-coenzyme A thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl-CoA units into acetoacetyl-CoA. By screening a tobacco (Nicotiana tabacum L.) cDNA library using a radish probe, we isolated two genes encoding an AACT. The deduced protein sequences, referred to as NtAACT1 and NtAACT2, were found to be 77% identical and to share high homologies with other AACTs. Here, we report that both NtAACTs exhibited distinct expression patterns in planta and that the enzymes localize to separate cell compartments, suggesting different metabolic functions. At its C-terminus, NtAACT1 bears an SSL motif corresponding to a peroxisomal targeting signal of type 1. We present evidence that NtAACT1 is readily imported into glyoxysomes by demonstrating in vivo colocalization of the chimeric proteins, GFP-NtAACT1 and RFP-SKL, in transiently transformed tobacco BY-2 cells. The importance of the SSL motif was stressed by the absence of glyoxysomal delivery of the fusion protein lacking the tripeptide. In contrast, NtAACT2 is clearly a soluble enzyme, with no obvious targeting signal to a defined cell membrane compartment. Its participation in isoprenoid biosynthesis via the mevalonate pathway was attested by potato virus X-induced gene silencing experiments in Nicotiana benthamiana plants. Silencing of endogenous NbAACT2 was shown indeed to trigger a 50% reduction in the levels of sterol biosynthetic precursors. A spatiotemporal study of expression patterns of both genes in planta indicated that NtAACT2 was expressed throughout the plant, but more effectively in young tissues. In contrast, NtAACT1 displayed a significant expression only in senescent leaves and early stages of germination and appears to be functional in the glyoxysomal/peroxisomal β-oxidation of fatty acids, catalyzing the last step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahumada I, Cairo A, Hemmerlin A et al (2008) Characterization of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct Plant Biol 35:1100–1111

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants- a review. Lipids 30:191–202

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC, Chapman S, Santa Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  PubMed  CAS  Google Scholar 

  • Burger C, Rondet S, Benveniste P, Schaller H (2003) Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14α-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J Exp Bot 54:1675–1683

    Article  PubMed  CAS  Google Scholar 

  • Burger-Probst C (2003) Rôle de la 3-hydroxy-3-méthyl­glutaryl Coenzyme A réductase dans la régulation de la biosynthèse des stérols chez les plantes. Ph.D. thesis, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Carrie C, Murcha MW, Millar AH, Smith SM, Whelan J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63:97–108

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Darnet S, Rahier A (2004) Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl-oxidases. Biochem J 378:889–898

    Article  PubMed  CAS  Google Scholar 

  • Dimster-Denk D, Rine J (1996) Transcriptional regulation of a sterol-biosynthetic enzyme by sterol levels in Saccharomyces cerevisiae. Mol Cell Biol 16: 3981–3989

    PubMed  CAS  Google Scholar 

  • Dimster-Denk D, Rine J, Phillips J et al (1999) Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix™. J Lipid Res 40:850–860

    PubMed  CAS  Google Scholar 

  • Dyer JH, Maina A, Gomez ID, Cadet M, Oeljeklaus S, Schiedel AC (2009) Cloning, expression and purification of an acetoacetyl CoA thiolase from sunflower cotyledon. Int J Biol Sci 5:736–744

    Article  PubMed  CAS  Google Scholar 

  • Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 9:927–931

    Article  Google Scholar 

  • Enjuto M, Lumbreras V, Marín C, Boronat A (1995) Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7:517–527

    PubMed  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Gerhardt B (1992) Fatty acid degradation in plants. Prog Lipid Res 31:417–446

    Article  PubMed  CAS  Google Scholar 

  • Germain V, Rylott EL, Larson TR et al (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gietl C (1996) Protein targeting and import into plant peroxisomes. Physiol Plant 97:599–608

    Article  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  • Gondet L, Bronner R, Benveniste P (1994) Regulation of sterol content in membranes by subcellular compartmentation of steryl-esters accumulating in a sterol-overproducing tobacco mutant. Plant Physiol 105: 509–518

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Haapalainen AM, Meriläinen G, Pirilä PL, Kondo N, Fukao T, Wierenga RK (2007) Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function. Biochemistry 46:4305–4321

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Aoki M, Kato A, Kondo M, Nishimura M (1996) Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J 10:225–234

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Fischt I, Bach TJ (2000) Differential interaction of branch-specific inhibitors of isoprenoid biosynthesis with cell cycle progression in tobacco BY-2 cells. Physiol Plant 110:342–349

    Article  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O et al (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hogenboom S, Romeijn GJ, Houten SM, Baes M, Wanders RJ, Waterham HR (2002) Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. J Lipid Res 43:90–98

    PubMed  CAS  Google Scholar 

  • Honda A, Salen G, Nguyen LB, Xu G, Tint GS, Batta AK, Shefer S (1998) Regulation of early cholesterol biosynthesis in rat liver: effects of sterols, bile acids, lovastatin, and BM 15.766 on 3-hydroxy-3-methylglutaryl coenzyme A synthase and acetoacetyl coenzyme A thiolase activities. Hepatology 27:154–159

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Hayashi M, Takeuchi Y, Nishimura M (1996) cDNA cloning and expression of a gene for 3-keto­acyl-CoA thiolase in pumpkin cotyledons. Plant Mol Biol 31:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  • Kurihara T, Ueda M, Tanaka A (1988) Occurrence and possible roles of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase in peroxisomes of an n-alkane-grown yeast, Candida tropicalis. FEBS Lett 229:215–218

    Article  PubMed  CAS  Google Scholar 

  • Kursula P, Sikkilä H, Fukao T, Kondo N, Wierenga RK (2005) High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J Mol Biol 347:189–201

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Mullen RT, Trelease RN (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9:185–197

    PubMed  CAS  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNA-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    Google Scholar 

  • Meriläinen G, Poikela V, Kursula P, Wierenga RK (2009) The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48:11011–11025

    Article  PubMed  Google Scholar 

  • Merret R, Cirioni J, Bach TJ, Hemmerlin A (2007) A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxy­methylglutaryl-CoA reductase isoform. FEBS Lett 581:5295–5299

    Article  PubMed  CAS  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Wierenga RK (1999) A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7:1279–1290

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nagegowda DA, Bach TJ, Chye ML (2004) Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J 383: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Ramalingam S, Hemmerlin A, Bach TJ, Chye ML (2005) Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta 221:844–856

    Article  PubMed  CAS  Google Scholar 

  • Oeljeklaus S, Fischer K, Gerhardt B (2002) Glyoxysomal acetoacetyl-CoA thiolase and 3-oxoacyl-CoA thiolase from sunflower cotyledons. Planta 214:597–607

    Article  PubMed  CAS  Google Scholar 

  • Olivier LM, Kovacs W, Masuda K, Keller GA, Krisans SK (2000) Identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. AA-CoA thiolase, HMG-CoA synthase, MPPD, and FPP synthase. J Lipid Res 41:1921–1935

    PubMed  CAS  Google Scholar 

  • Peretó J, López-García P, Moreira D (2005) Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J Mol Evol 61:65–74

    Article  PubMed  Google Scholar 

  • Pirovano W, Feenstra KA, Heringa J (2008) PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24:492–497

    Article  PubMed  CAS  Google Scholar 

  • Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A (2010) Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 285:24078–24088

    Article  PubMed  CAS  Google Scholar 

  • Rahier A, Benveniste P (1989) Mass spectral identification of phytosterols. In: Nes WD, Parish EJ (eds) Analysis of sterols and other significant steroids. Academic, New York, pp 223–250

    Google Scholar 

  • Reumann S, Babujee L, Ma C et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18:1996–2007

    Article  PubMed  Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT, Song YH, Chua NH (1995) Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Servouse M, Karst F (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J 240:541–547

    PubMed  CAS  Google Scholar 

  • Simkin AJ, Guirimand G, Papon N et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914. doi: 10.1007/s00425-011-1444-6

    Google Scholar 

  • Soto S, Stritzler M, Lisi C et al (2011) Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J Exp Bot 62:5699–5711. doi:10.1093/jxb/err287

    Google Scholar 

  • Stermer BA, Bianchini GM, Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35:1133–1140

    PubMed  CAS  Google Scholar 

  • Thompson SL, Krisans SK (1990) Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoA. J Biol Chem 265:5731–5735

    PubMed  CAS  Google Scholar 

  • Van der Heijden R, Verpoorte R, Duine JA (1994a) Biosynthesis of 3S-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus: acetoacetyl-CoA thiolase and HMG-CoA synthase show similar chromatographic behaviour. Plant Physiol Biochem 32:807–812

    CAS  Google Scholar 

  • Van der Heijden R, de Boer-Hlupá V, Verpoorte R, Duine JA (1994b) Enzymes involved in the metabolism of 3-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tiss Org Cult 38:345–349

    Article  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  PubMed  CAS  Google Scholar 

  • Vollack K-U, Bach TJ (1996) Cloning of a cDNA encoding cytosolic acetoacetyl-coenzyme A thiolase from radish by functional expression in Saccharomyces cerevisiae. Plant Physiol 111:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nagegowda DN, Rawat R et al (2012) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42

    Google Scholar 

  • Wass MN, Kelley LA, Sternberg MJE (2010) 3DligandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:W469–W473

    Article  PubMed  CAS  Google Scholar 

  • Weissenborn DL, Denbow CJ, Laine M, Lång SS, Yang Z, Yu X, Cramer CL (1995) HMG-CoA reductase and terpenoid phytoalexins: molecular specialization within a complex pathway. Physiol Plant 93:393–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. P. Benveniste for providing us the N. tabacum cDNA library prepared with mRNAs isolated from 8-week-old SH6 tobacco calli. We are grateful to Dr. M. Rodríguez-Concepción (University of Barcelona, Spain) and Dr. A. Hemmerlin (IBMP, Strasbourg) for making available the pGFP-MRC and pRFP vectors, respectively.

We also thank Valérie Cognat (IBMP, Strasbourg) for her help in phylogenetic analyses.

The Confocal Microscopy Platform was cofinanced by the Centre National de la Recherche Scientifique, the Université de Strasbourg, the Région Alsace, the Association pour la Recherche sur le Cancer (ARC), and the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wentzinger, L., Gerber, E., Bach, T.J., Hartmann, MA. (2012). Occurrence of Two Acetoacetyl-Coenzyme A Thiolases with Distinct Expression Patterns and Subcellular Localization in Tobacco. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_24

Download citation

Publish with us

Policies and ethics