Skip to main content

Molecular Biology of Glioma

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Glioblastoma (GBM) is the most aggressive form of glioma. Despite ceaseless efforts by researchers and physicians to find new therapeutic strategies, there have been no significant advances in the treatment of GBMs for several decades and most patients with GBM die within one and half years of diagnosis. Undoubtedly, one reason for this is the insufficient understanding of the initiation and progression of GBMs at the molecular level. However, recent information regarding the genetic and epigenetic alterations and the microRNAs that are aberrantly activated or inactivated in GBMs has helped elucidate the formation of GBM in more detail. Here, we describe recent advances in the understanding of the biology of GBMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987–996.

    Article  PubMed  CAS  Google Scholar 

  2. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1999; 1:44–51.

    PubMed  CAS  Google Scholar 

  3. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061–1068.

    Google Scholar 

  4. Louis DN. The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 1994; 53:11–21.

    Article  PubMed  CAS  Google Scholar 

  5. Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807–1812.

    Article  PubMed  CAS  Google Scholar 

  6. Ueki K, Ono Y, Henson JW et al. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 1996; 56:150–153.

    PubMed  CAS  Google Scholar 

  7. Wong AJ, Bigner SH, Bigner DD et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987; 84:6899–6903.

    Article  PubMed  CAS  Google Scholar 

  8. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170:1445–1453.

    Article  PubMed  CAS  Google Scholar 

  9. Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology and paths to treatment. Genes Dev 2007; 21:2683–2710.

    Article  PubMed  CAS  Google Scholar 

  10. Weber RG, Sabel M, Reifenberger J et al. Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 1996; 13:983–994.

    PubMed  CAS  Google Scholar 

  11. Huse JT, Holland EC. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 2009; 19:132–143.

    Article  PubMed  CAS  Google Scholar 

  12. Di Rocco F, Carroll RS, Zhang J et al. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 1998; 42:341–346.

    Article  PubMed  Google Scholar 

  13. Hesselager G, Holland EC. Using mice to decipher the molecular genetics of brain tumors. Neurosurgery 2003; 53:685–694; discussion 95.

    Article  PubMed  Google Scholar 

  14. Weissenberger J, Steinbach JP, Malin G et al. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 1997; 14:2005–2013.

    Article  PubMed  CAS  Google Scholar 

  15. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71:543–546.

    Article  PubMed  CAS  Google Scholar 

  16. Nurse P. Checkpoint pathways come of age. Cell 1997; 91:865–867.

    Article  PubMed  CAS  Google Scholar 

  17. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432:316–323.

    Article  PubMed  CAS  Google Scholar 

  18. Henson JW, Schnitker BL, Correa KM et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 1994; 36:714–721.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe T, Yokoo H, Yokoo M et al. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 2001; 60:1181–1189.

    PubMed  CAS  Google Scholar 

  20. Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360:765–773.

    Article  PubMed  CAS  Google Scholar 

  21. Xu X, Zhao J, Xu Z et al. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 2004; 279:33946–33957.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324:261–265.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe T, Nobusawa S, Kleihues P et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009; 174:1149–1153.

    Article  PubMed  CAS  Google Scholar 

  24. Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433:769–773.

    Article  PubMed  CAS  Google Scholar 

  25. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843–854.

    Article  PubMed  CAS  Google Scholar 

  26. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75:855–862.

    Article  PubMed  CAS  Google Scholar 

  27. Baulcombe D. DNA events. An RNA microcosm. Science 2002; 297:2002–2003.

    Article  PubMed  CAS  Google Scholar 

  28. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18:504–511.

    Article  PubMed  CAS  Google Scholar 

  29. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA 2006; 103:4034–9.

    Article  PubMed  CAS  Google Scholar 

  30. Chendrimada TP, Finn KJ, Ji X et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 2007; 447:823–838.

    Article  PubMed  CAS  Google Scholar 

  31. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318:1931–1934.

    Article  PubMed  CAS  Google Scholar 

  32. Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  33. Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793–1801.

    Article  PubMed  CAS  Google Scholar 

  34. Lawler S, Chiocca EA. Emerging functions of microRNAs in glioblastoma. J Neurooncol 2009; 92:297–306.

    Article  PubMed  CAS  Google Scholar 

  35. Corsten MF, Miranda R, Kasmieh R et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 2007; 67:8994–9000.

    Article  PubMed  CAS  Google Scholar 

  36. Godlewski J, Nowicki MO, Bronisz A et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008; 68:9125–9130.

    Article  PubMed  CAS  Google Scholar 

  37. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68:8164–8172.

    Article  PubMed  CAS  Google Scholar 

  38. Kefas B, Godlewski J, Comeau L et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68:3566–3572.

    Article  PubMed  CAS  Google Scholar 

  39. Silber J, Lim DA, Petritsch C et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6:14.

    Article  PubMed  Google Scholar 

  40. Holland EC, Hively WP, DePinho RA et al. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12:3675–3685.

    Article  PubMed  CAS  Google Scholar 

  41. Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1:269–277.

    Article  PubMed  CAS  Google Scholar 

  42. Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353:2012–2024.

    Article  PubMed  CAS  Google Scholar 

  43. Kreisl TN. Chemotherapy for malignant gliomas. Semin Radiat Oncol 2009; 19:150–154.

    Article  PubMed  Google Scholar 

  44. Sarkaria JN, Kitange GJ, James CD et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 2008; 14:2900–2908.

    Article  PubMed  CAS  Google Scholar 

  45. Engelhard HH. The role of interstitial BCNU chemotherapy in the treatment of malignant glioma. Surg Neurol 2000; 53:458–464.

    Article  PubMed  CAS  Google Scholar 

  46. Dumenco LL, Allay E, Norton K et al. The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 1993; 259:219–222.

    Article  PubMed  CAS  Google Scholar 

  47. Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002; 20:2388–2399.

    Article  PubMed  CAS  Google Scholar 

  48. Kaina B, Fritz G, Mitra S et al. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 1991; 12:1857–1867.

    Article  PubMed  CAS  Google Scholar 

  49. Baer JC, Freeman AA, Newlands ES et al. Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br J Cancer 1993; 67:1299–1302.

    Article  PubMed  CAS  Google Scholar 

  50. Redmond SM, Joncourt F, Buser K et al. Assessment of P-glycoprotein, glutathione-based detoxifying enzymes and O6-alkylguanine-DNA alkyltransferase as potential indicators of constitutive drug resistance in human colorectal tumors. Cancer Res 1991; 51:2092–2097.

    PubMed  CAS  Google Scholar 

  51. Hermisson M, Klumpp A, Wick W et al. O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 2006; 96:766–776.

    Article  PubMed  CAS  Google Scholar 

  52. Watts GS, Pieper RO, Costello JF et al. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol 1997; 17:5612–5619.

    PubMed  CAS  Google Scholar 

  53. Hegi ME, Diserens AC, Godard S et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004; 10:1871–1874.

    Article  PubMed  CAS  Google Scholar 

  54. Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352:997–1003.

    Article  PubMed  CAS  Google Scholar 

  55. Reifenberger J, Reifenberger G, Liu L et al. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 1994; 145:1175–1190.

    PubMed  CAS  Google Scholar 

  56. Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  57. Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24:2707–2714.

    Article  PubMed  CAS  Google Scholar 

  58. Zaidi HA, Kosztowski T, DiMeco F et al. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neurooncol 2009; 93:49–60.

    Article  PubMed  Google Scholar 

  59. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432:396–401.

    Article  PubMed  CAS  Google Scholar 

  60. Kania G, Corbeil D, Fuchs J et al. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 2005; 23:791–804.

    Article  PubMed  CAS  Google Scholar 

  61. Weigmann A, Corbeil D, Hellwig A et al. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 1997; 94:12425–12430.

    Article  PubMed  CAS  Google Scholar 

  62. Houchens DP, Ovejera AA, Riblet SM et al. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol 1983; 19:799–805.

    Article  PubMed  CAS  Google Scholar 

  63. Hu B, Guo P, Fang Q et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA 2003; 100:8904–8909.

    Article  PubMed  CAS  Google Scholar 

  64. Wang J, Sakariassen PO, Tsinkalovsky O et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 2008; 122:761–768.

    Article  PubMed  CAS  Google Scholar 

  65. Griguer CE, Oliva CR, Gobin E et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 2008; 3:e3655.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Saya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Marumoto, T., Saya, H. (2012). Molecular Biology of Glioma. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_1

Download citation

Publish with us

Policies and ethics