Skip to main content

Emotions Studied by Imaging of the Human Brain: The Somatic and Emotional Motor Systems

  • Reference work entry
Neuroscience in the 21st Century

Abstract

The brain has only two goals, survival of the individual and survival of the species. One of the most important tools to accomplish these goals is the motor system, which includes the somatic or voluntary motor system and the emotional motor system (EMS). The EMS is equally or even more important than the somatic motor system. In humans, the cortex cerebri with the corticospinal tract plays the most important role in the somatic motor system, while in the EMS, the periaqueductal gray (PAG) plays a central role controlling nociception, cardiovascular changes, respiration, micturition, parturition, defecation, vocalization, vomiting, coughing, sneezing, mating behavior, pupil dilation, and defensive posture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Adametz J, Oleary JL (1959) Experimental mutism resulting from periaqueductal lesions in cats. Neurology 9:636–642

    Article  PubMed  CAS  Google Scholar 

  • Alexander MP, Hillis AE (2008) Aphasia. Handb Clin Neurol 88:287–309

    Article  PubMed  Google Scholar 

  • Bandler R (1975) Predatory aggression – midbrain pontine junction rather than hypothalamus as critical structure. Aggress Behav 1:261–266

    Article  Google Scholar 

  • Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Emot Mot Syst 107:285–300

    Article  CAS  Google Scholar 

  • Barraud Q, Obeid I, Aubert I, Barriere G, Contamin H, McGuire S, Ravenscroft P, Porras G, Tison F, Bezard E, Ghorayeb I (2010) Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One 5:e13306

    Article  PubMed  Google Scholar 

  • Bittar RG, Kar-Purkayastha I, Owen SL, Bear RE, Green A, Wang SY, Aziz TZ (2005) Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci 12:515–519

    Article  PubMed  Google Scholar 

  • Bosler O, Nieoullon A, Onteniente B, Dusticier N (1983) Invitro autoradiographic study of the mono-aminergic innervation of cat red nucleus - Identification of serotonergic terminals. Brain Res 259:288–292

    Article  PubMed  CAS  Google Scholar 

  • Carrive P, Bandler R (1991) Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal gray – a correlative functional and anatomical study. Brain Res 541:206–215

    Article  PubMed  CAS  Google Scholar 

  • Carrive P, Bandler R, Dampney RAL (1989) Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat – a distinctive pattern evoked by excitation of neurons in the subtentorial portion of the midbrain periaqueductal grey. Brain Res 483:251–258

    Article  PubMed  CAS  Google Scholar 

  • Crippa GE, Lewis SJ, Johnson AK, Correa FMA (2000) Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation. J Auton Nerv Syst 79:1–7

    Article  PubMed  CAS  Google Scholar 

  • Domyancic AV, Morilak DA (1997) Distribution of alpha(1A) adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J Comp Neurol 386:358–378

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Demeurisse G, Alberti B, Fabbro F (1999) Complete mutism after midbrain periaqueductal gray lesion. Neuroreport 10:681–685

    Article  PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI (1978) Brain-stem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–248

    Article  PubMed  CAS  Google Scholar 

  • Green AL, Hyam JA, Williams C, Wang SY, Shlugman D, Stein JF, Paterson DJ, Aziz TZ (2010) Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans. Neuromodulation 13:174–181

    Article  PubMed  Google Scholar 

  • Hamalainen MM, Lovick TA (1997) Role of nitric oxide and serotonin in modulation of the cardiovascular defence response evoked by stimulation in the periaqueductal grey matter in rats. Neurosci Lett 229:105–108

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1987a) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1987b) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1988a) Brainstem-spinal cord projections in the cat, related to control of head and axial movements. Rev Oculomot Res 2:431–470

    PubMed  CAS  Google Scholar 

  • Holstege G (1988b) Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat. Prog Brain Res 77:47–94

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79

    PubMed  CAS  Google Scholar 

  • Holstege G (2010) The emotional motor system and micturition control. Neurourol Urodyn 29:42–48

    Article  PubMed  Google Scholar 

  • Holstege G, Huynh HK (2011) Brain circuits for mating behavior in cats and brain activations and de-activations during sexual stimulation and ejaculation and orgasm in humans. Horm Behav 59:702–707

    Article  PubMed  Google Scholar 

  • Holstege G, Kuypers HG (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. Prog Brain Res 57:145–175

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Tan J (1988) Projections from the red nucleus and surrounding areas to the brainstem and spinal cord in the cat. An HRP and autoradiographical tracing study. Behav Brain Res 28:33–57

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Kuypers HG, Dekker JJ (1977) The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat. Brain J Neurol 100:264–286

    CAS  Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391 Experimentelle Hirnforschung Experimentation cerebrale

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Griffiths D, de Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    Article  PubMed  CAS  Google Scholar 

  • Holstege JC, VanDijken H, Buijs RM, Goedknegt H, Gosens T, Bongers CMH (1996) Distribution of dopamine immunoreactivity in the rat, cat, and monkey spinal cord. J Comp Neurol 376:631–652

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Mouton LJ, Gerrits PO (2004) Emotional motor system. In: Paxinos G (ed) The human nervous system. Academic, Sydney/Tokyo, pp 1306–1324

    Chapter  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–547 Experimentelle Hirnforschung Experimentation Cerebrale

    Article  PubMed  CAS  Google Scholar 

  • Huffman RD, Davis R (1977) Pharmacology of the brachium conjunctivum: red nucleus synaptic system in the baboon. J Neurosci Res 3:175–191

    Article  PubMed  CAS  Google Scholar 

  • Huisman AM, Kuypers HGJM, Verburgh CA (1981) Quantitative differences in collateralization of the descending spinal pathways from red nucleus and other brain-stem cell groups in rat as demonstrated with the multiple fluorescent retrograde tracer technique. Brain Res 209:271–286

    Article  PubMed  CAS  Google Scholar 

  • Kawatani M, Takeshige C, Degroat WC (1990) Central distribution of afferent pathways from the uterus of the cat. J Comp Neurol 302:294–304

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Hagiwara Y, Sekiya D, Fukumori R (1999) Midbrain central gray is involved in mediation of cholinergic inputs to the rostral ventrolateral medulla of the rat. Brain Res Bull 50:41–46

    Article  PubMed  CAS  Google Scholar 

  • Kuipers R, Mensinga GM, Boers J, Klop EM, Holstege G (2006) Infralimbic cortex projects to all parts of the pontine and medullary lateral tegmental field in cat. Eur J Neurosci 23:3014–3024

    Article  PubMed  Google Scholar 

  • Kuypers H (1958) Pericentral cortical projections to motor and sensory nuclei. Science 128:662–663

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB (ed) Handbook of physiology. Section I, the nervous system. American Physiological Society, Washington, pp 597–666

    Google Scholar 

  • Lovick TA (1985) Ventrolateral medullary lesions block the antinociceptive and cardiovascular-responses elicited by stimulating the dorsal periaqueductal grey-matter in rats. Pain 21:241–252

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey.2. Descending efferent projections. J Neurophysiol 49:582–594

    PubMed  CAS  Google Scholar 

  • Miller AD (1999) Central mechanisms of vomiting. Dig Dis Sci 44:39S–43S

    PubMed  CAS  Google Scholar 

  • Mullins OJ, Hackett JT, Buchanan JT, Friesen WO (2011) Neuronal control of swimming behavior: comparison of vertebrate and invertebrate model systems. Prog Neurobiol 93:244–269

    Article  PubMed  Google Scholar 

  • Nashold BS Jr, Wilson WP, Slaughter DG (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30:14–24

    Article  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Cv H (2008) The human central nervous system, 4th edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Pereira EAC, Lu GH, Wang SY, Schweder PM, Hyam JA, Stein JF, Paterson DJ, Aziz TZ, Green AL (2010) Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 223:574–581

    Article  PubMed  Google Scholar 

  • Peterson BW, Abzug C (1975) Properties of projections from vestibular nuclei to medial reticular-formation in cat. J Neurophysiol 38:1421–1435

    PubMed  CAS  Google Scholar 

  • Ralston DD, Milroy AM, Holstege G (1988) Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneurons in Macaca mulatta. Neurosci Lett 95:102–106

    Article  PubMed  CAS  Google Scholar 

  • Routal RV, Pal GP (1999) Location of the phrenic nucleus in the human spinal cord. J Anat 195(Pt 4):617–621

    Article  PubMed  Google Scholar 

  • Schvarcz JR (1975) Periaqueductal mesencephalotomy for facial central pain. In: Neurosurgical treatment in psychiatry, pain and epilepsy. University Park Press, Baltimore

    Google Scholar 

  • Subramanian HH, Holstege G (2009) The nucleus retroambiguus control of respiration. J Neurosci Off J Soc Neurosci 29:3824–3832

    Article  CAS  Google Scholar 

  • Sun WM, Macdonagh R, Forster D, Thomas DG, Smallwood R, Read NW (1995) Anorectal function in patients with complete spinal transection before and after sacral posterior rhizotomy. Gastroenterology 108:990–998

    Article  PubMed  CAS  Google Scholar 

  • Vanderhorst VG, Holstege G (1995) Caudal medullary pathways to lumbosacral motoneuronal cell groups in the cat: evidence for direct projections possibly representing the final common pathway for lordosis. J Comp Neurol 359:457–475

    Article  PubMed  CAS  Google Scholar 

  • VanderHorst VG, Holstege G (1997a) Estrogen induces axonal outgrowth in the nucleus retroambiguus-lumbosacral motoneuronal pathway in the adult female cat. J Neurosci Off J Soc Neurosci 17:1122–1136

    CAS  Google Scholar 

  • Vanderhorst VG, Holstege G (1997b) Nucleus retroambiguus projections to lumbosacral motoneuronal cell groups in the male cat. J Comp Neurol 382:77–88

    Article  PubMed  CAS  Google Scholar 

  • Zwergal A, Strupp M, Brandt T, Buttner-Ennever JA (2009) Parallel ascending vestibular pathways anatomical localization and functional specialization. In: Strupp M, Buttner U, Cohen B (eds) Basic and clinical aspects of vertigo and dizziness. Blackwell, Oxford, pp 51–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Holstege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this entry

Cite this entry

Holstege, G., Huynh, H.K. (2013). Emotions Studied by Imaging of the Human Brain: The Somatic and Emotional Motor Systems. In: Pfaff, D.W. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1997-6_75

Download citation

Publish with us

Policies and ethics