Skip to main content

Studies of Brain Metabolism: A Historical Perspective

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

Understanding of the complicated metabolic processes in the brain related to energy and amino acid neurotransmitter homeostasis is strictly dependent on the advancement of methodological technology both with regard to temporal and spatial resolution. The present review attempts to relate energy and amino acid metabolism at the cellular and inter-cellular level to use of radioactively labeled substrates and later 13C-labeling combined with NMR and LC-MS technologies. The significance of cell culture techniques in this context is also discussed. The complexity of these metabolic processes is illustrated by a discussion of the compartmentation paradigm at the multicellular as well as the single cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D, Laughlin SB (2001) An energy budget for signalling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Balazs R (1970) Carbohydrate metabolism. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 1–36

    Google Scholar 

  • Balazs R, Machiyama Y, Patel AJ (1973) Compartmentation and the metabolism of γ-aminobutyrate. In: Balazs R, Cremer JE (eds) Metabolic compartmentation in the brain. McMillan Press, Ltd, London, pp 57–70

    Google Scholar 

  • Berl S, Clarke DD (1969) Compartmentation of amino acid metabolism. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 447–472

    Google Scholar 

  • Berl S, Nicklas WJ, Clarke DD (1968) Compartmentation of glutamic acid metabolism in brain slices. J Neurochem 15:131–140

    Article  PubMed  CAS  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras G, Magistretti PJ (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Blomstrand C, Hamberger A (1969) Protein turnover in cell-enriched fractions from rabbit brain. J Neurochem 16:1401–1407

    Article  PubMed  CAS  Google Scholar 

  • Blomstrand C, Hamberger A (1970) Amino acid incorporation in vitro in proteins of neuronal and glial cell enriched fractions. J Neurochem 17:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Bluml S, Moreno-Torres A, Shic F, Nguy CH, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15:1–5

    Article  PubMed  CAS  Google Scholar 

  • Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    PubMed  CAS  Google Scholar 

  • Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS, Ransom BR (2005) Astrocyte glycogen metabolism is required for neural activity during aglycaemia or intense stimulation in mouse white matter. J Neurosci Res 79:64–80

    Article  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  PubMed  CAS  Google Scholar 

  • Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  • Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43:317–322

    Article  PubMed  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1994) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Raven, New York, pp 645–680

    Google Scholar 

  • Dichter MA (1978) Rat cortical-neurons in cell culture-culture methods, cell methods, cell morphology, electrophysiology and synapse formation. Brain Res 149:279–293

    Article  PubMed  CAS  Google Scholar 

  • Dichter MA (1980) Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res 190:111–121

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102:466–478

    Article  PubMed  CAS  Google Scholar 

  • Freygang WH, Sokoloff L (1958) Quantitative measurements of regional circulation in the central nervous system by the use of radioactive inert gas. Adv Biol Med Phys 6:263–279

    PubMed  CAS  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel D (1966) A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, Krebs cycle and related metabolites. J Biol Chem 241:3918–3929

    PubMed  CAS  Google Scholar 

  • Gibbs ME, O’Dowd BS, Hertz E, Hertz L (2006) Astrocyte energy metabolism consolidates memory in young chicks. Neuroscience 141:9–13

    Article  PubMed  CAS  Google Scholar 

  • Gibbs ME, Hutchinson D, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev 32:927–944

    Article  PubMed  Google Scholar 

  • Gray EG, Whittaker VP (1960) The isolation of synaptic vesicles from the central nervous system. J Physiol 153:35–37P

    Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat (Lond) 96:79–88

    CAS  Google Scholar 

  • Hamberger A (1971) Amino acid uptake in neuronal and glial cell fractions from rabbit cortex. Brain Res 31:169–178

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A, Sellström A (1975) Techniques for separation of neurons and glia and their application to metabolic studies. In: Berl S, Clarke DD, Schneider D (eds) Metabolic compartmentation and neurotransmission. Plenum Publishing Corp, New York, pp 145–165

    Chapter  Google Scholar 

  • Hassel B, Brathe A (2000a) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20:1342–1347

    PubMed  CAS  Google Scholar 

  • Hassel B, Brathe A (2000b) Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate and carboxylation. J Cereb Blood Flow Metab 20:327–336

    Article  PubMed  CAS  Google Scholar 

  • Henn F, Hamberger A (1971) Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci USA 68:2686–2690

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Schousboe A (1975) Ion and energy metabolism of the brain at the cellular level. Int Rev Neurobiol 18:141–211

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn. Plenum Press, New York, pp 603–661

    Google Scholar 

  • Hertz L, Yu AC, Kala G, Schousboe A (2000) Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem Int 37:83–102

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:129–149

    Article  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KB, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 27:865–877

    Article  Google Scholar 

  • Iversen P, Sørensen M, Bak LK, Waagepetersen HS, Vafaee MS, Borghammer P, Mouridsen K, Jensen SB, Vilstrup H, Schousboe A, Ott P, Gjedde A, Keiding S (2009) Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology 136:863–871

    Article  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory procedure, and normal values. J Clin Invest 27:476–483

    Article  Google Scholar 

  • LeBaron FN (1955) The resynthesis of glycogen by guinea-pig cerebral cortex slices. Biochem J 61:80–85

    PubMed  CAS  Google Scholar 

  • Lebon V, Petersen KF, Cline GW, Shen J, Mason GF et al (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    PubMed  CAS  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischaemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    PubMed  CAS  Google Scholar 

  • Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of the TCA cycle rate and alphaketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12:434–447

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Schulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    Article  PubMed  CAS  Google Scholar 

  • Messer A (1977) The maintenance and identification of mouse cerebellar granule cells in mono layer culture. Brain Res 130:1–12

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  • Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurones from cerebellum. J Neurosci Res 85:3318–3325

    Article  PubMed  CAS  Google Scholar 

  • Patel MS (1974) The effect of ketone bodies on pyruvate carboxylation by rat brain mitochondria. J Neurochem 23:865–867

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Johnson AL, Balazs R (1974) Metabolic compartmentation of glutamate associated with the formation of γ-aminobutyrate. J Neurochem 23:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 15:10625–10629

    Article  Google Scholar 

  • Preece NE, Cerdan S (1996) Metabolic precursors and compartmentation of cerebral GABA in vigabatrin-treated rats. J Neurochem 67:1718–1725

    Article  PubMed  CAS  Google Scholar 

  • Quastel JH (1975) Metabolic compartmentation in the brain and effects of metabolic inhibitors. In: Berl S, Clarke DD, Schneider D (eds) Metabolic compartmentation and neurotransmission. Plenum Press, New York, pp 337–361

    Chapter  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    PubMed  CAS  Google Scholar 

  • Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F (2008) The micro-architecture of the cerebral cortex and its impact on functional neuroimaging. I-Metabolic demand. Neuroimage 40:1436–1459

    Article  PubMed  Google Scholar 

  • Roberts E (2007a) Gamma-aminobutyric acid. Scholarpedia 2. doi:10.4249/scholarpedia.3356

  • Roberts EL Jr (2007b) The support of energy metabolism in the central nervous system with substrates other than glucose. In: Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Springer Science, New York, pp 137–179

    Chapter  Google Scholar 

  • Roberts, E and Frankel S (1950) Gamma-aminobutyric acid in brain. Its formation from glutamic acid. J. Biol. Chem. 187:55–63

    Chapter  Google Scholar 

  • Roberts E, Rothstein M, Baxter CF (1958) Some metabolic studies of γ-aminobutyric acid. Proc Soc Exp Biol Med 97:796–802

    PubMed  CAS  Google Scholar 

  • Rodrigues TB, Cerdan S (2007) The cerebral tricarboxylic acid cycles. In: Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology. Springer, Berlin/Heidelberg, pp 63–91

    Chapter  Google Scholar 

  • Rose SPR (1965) Preparation of enriched fractions from cerebral cortex containing isolated metabolically active neuronal cells. Nature (Lond) 208:621–622

    Article  Google Scholar 

  • Rose SPR (1967) Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active, neuronal and glial cells. Biochem J 102:33–43

    PubMed  CAS  Google Scholar 

  • Rose SPR (1968) Glucose and amino acid metabolism in isolated neuronal and glial cell fractions in vitro. J Neurochem 15:1415–1429

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Hertz L, Svenneby G (1977a) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2:217–229

    Article  CAS  Google Scholar 

  • Schousboe A, Svenneby G, Hertz L (1977b) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A, Nissen C, Bock E, Sapirstein VS, Juurlink BJH, Hertz L (1980) Biochemical development of rodent astrocytes in culture. In: Giacobini E, Vernadakis A, Shahar A (eds) Tissue culture in neurobiology. Raven, New York, pp 397–409

    Google Scholar 

  • Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM (2004) Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 45:512–527

    Article  Google Scholar 

  • Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18(1):94–99

    Article  PubMed  Google Scholar 

  • Shank RP, Campbell GLeM (1983) Glutamate. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn. Plenum Press, New York, pp 381–404

    Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    Article  PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    Article  PubMed  CAS  Google Scholar 

  • Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Sickmann HM, Walls AB, Schousboe A, Bouman SD, Waagepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(suppl 1):80–86

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Krane J, UnsgÃ¥rd G, Petersen SB, Schousboe A (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci Lett 128:235–239

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Hertz L, Schousboe A (1998) Mitochondrial heterogeneity in the brain at the cellular level. J Cereb Blood Flow Metab 18:231–237

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Syversen T, Schousboe A, Waagepetersen HS, Aschner M (2007) Actions of toxins on cerebral metabolism at cellular level. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology: brain energetics. Integration of molecular and cellular processes, 3rd edn. Springer, Berlin/Heidelberg, pp 569–585

    Chapter  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    PubMed  Google Scholar 

  • Vogel R, Jennemann G, Seitz J, Wiesinger H, Hamprecht B (1998) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain. J Neurochem 71:844–852

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (1999) Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. J Neurosci Res 57:342–349

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A (2001a) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C MRS. J Neurosci Res 63:347–355

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001b) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A (2003) Compartmentation of glutamine, glutamate and GABA metabolism in neurons and astrocytes: functional implications. Neuroscientist 9:398–403

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Hansen GH, Fenger K, Lindsay JG, Gibson G, Schousboe A (2006) Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of α-ketoglutarate dehydrogenase. Glia 53:225–231

    Article  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A (2007) Glutamine, glutamate and GABA: metabolic aspects. In: Lajtha A, Oja SS, Schousboe A, Saransaari P (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn, Amino acids and peptides in the nervous system. Springer, Berlin/Heidelberg, pp 1–21

    Chapter  Google Scholar 

  • Walls AB, Sickmann HM, Brown A, Bouman SD, Ransom B, Schousboe SA, Waagepetersen HS (2008) Characterization of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) as an inhibitor of brain glycogen shunt activity. J Neurochem 105:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Walls AB, Heimbürger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  PubMed  CAS  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    PubMed  CAS  Google Scholar 

  • Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17:203–211

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP (1969) The synaptosome. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 327–364

    Google Scholar 

  • Williamson DHP, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  • Yu ACH, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The secretarial assistance of Ms Hanne Danø is cordially acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schousboe, A. (2012). Studies of Brain Metabolism: A Historical Perspective. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_31

Download citation

Publish with us

Policies and ethics