Skip to main content

Magnetic Refrigeration: A Review of a Developing Technology

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: A Cryogenic Engineering Conference Publication ((ACRE,volume 33))

Abstract

Magnetic refrigeration has been used for over 50 years as a technique to achieve temperatures well below 1 K. However, in the last ten years, the technology has been developing for refrigeration applications above 1 K up to, and including heat pumps above room temperature. The work has been multinational in scope and has focused on analysis of magnetic thermodynamic systems, investigation of magnetic materials suitable for refrigerants, and development of prototype refrigerators. Devices providing refrigeration between 1.5 K and 4.2 K, 4.2 K and 20 K, and near room temperature have been emphasized. Recently development efforts have been extended into the 20 K to 80 K temperature range. The understanding of the fundamental limits on magnetic refrigeration is slowly evolving as is a data base for design. The thermodynamic performance of the prototypes has been steadily improving but still has not reached the theoretical limits predicted by analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz and K.A. Muller Z. Phys. B64: 189 (1986).

    CAS  Google Scholar 

  2. K. Mendelssohn, “The Quest for Absolute Zero; the Meaning of Low Temperature Physics”, Taylor and Francis, Ltd., London, (1977).

    Google Scholar 

  3. See, for example, I. Kolin, “The Evolution of the Heat Engine”, Longman Group Ltd., London (1972).

    Google Scholar 

  4. J.A. Cunningham and R.A. Mollicone, S.P.I.E., V. 253: 170 (1980).

    Google Scholar 

  5. W.A. Steyert; J. de Physique 39: C6–1598 (1978).

    Google Scholar 

  6. T. Hashimoto, Adv. in Cryog. Eng. 32: 261 (1986).

    Google Scholar 

  7. A.F. Lacaze, G. Claudet, A.A. Lacaze, adn P. Seyfert; Proc. ICEC-10, pg. 23; Helsinki, (Butterworth and Co., Guildford, U.K. 1984 ).

    Google Scholar 

  8. J.A. Barclay, Proc. of Cryocooler Conf., Boulder NBS-SP-698, Vey, 1985.

    Google Scholar 

  9. H.B. Callen, “Thermodynamics”, J. Wiley and Sons, Inc., New York (1959).

    Google Scholar 

  10. J.A. Stratton, “Electromagnetic Theory”, McGraw Hill Co., Inc., New York (1941); Chp II.

    Google Scholar 

  11. W.C. Overton, Jr., Los Alamos National Laboratory internal report, (1985) unpublished, see also Y. Iwasa, J.L. Smith, Jr., C.P. Taussig - AFWAL-TR-86–3113.

    Google Scholar 

  12. L. Goldstein, Emeritus Staff Member T-Division, Los Alamos National Laboratory; private communication.

    Google Scholar 

  13. P. Weiss and A. Piccard; C.R. Acad. Sci (Paris) 166: 352 (1918).

    CAS  Google Scholar 

  14. P. Weiss and R. Forrer, Am. Phys. 5: 153 (1926).

    CAS  Google Scholar 

  15. P. Debye, Ann. Physik 81: 1154 (1926).

    Article  Google Scholar 

  16. W.F. Giauque, J. Am. Chem. Soc. 49: 1870 (1927).

    Article  CAS  Google Scholar 

  17. W.F. Giauque and D.P. MacDougall, Phys. Rev., 43: 768 (1933).

    Article  CAS  Google Scholar 

  18. N. Kurti and F. Simon, Proc. Roy. Soc., A149: 152 (1935).

    Article  CAS  Google Scholar 

  19. C.G.B. Garret, “Magnetic Cooling” (Harvard University Press, J. Wiley and Sons, Inc. (1954).

    Google Scholar 

  20. R.R. Hudson, Principles and Applications of Magnetic Cooling, ( North Holland, 1972 ).

    Google Scholar 

  21. O.V. Lounasmaa, Experimental Principles and Methods Below 1 K, (Academic Press, 1974 ).

    Google Scholar 

  22. C.V. Heer, C.B. Barnes, and J.B. Daunt, Rev. Sci. Inst. 25: 1088 (1954)

    Article  CAS  Google Scholar 

  23. J.E. Zimmerman, J.D. McNutt, and H.V. Bohm; Cryogenics 2: 153 (1962).

    Article  Google Scholar 

  24. S.S. Rosenblum, H.A. Sheinberg, and W.A. Steyert; Cryogenics 16: 245 (1976).

    Article  Google Scholar 

  25. J.R. van Geuns; Phillips Res. Rep. Suppl. 6: (1966) “A Study of a New Magnetic Refrigerating Cycle”

    Google Scholar 

  26. There are inconsistencies in the early literature on magnetic refrigeration about names of various cycles. According to first law of thermodynamics in this paper (Eqn 3), the cooresponding gas-magnetic intensive variables are P and.H and the extensive variables are -V and M. For I. Kolin’s description of the gas cycles, this definition leads to the following definitions of magnetic cycles: Carnot equals 2 isothermal and 2 isentropic steps; Stirling equals 2 isothermal and 2 isomagnetization steps; Brayton (Ericsson 1833) equals 2 isothermals and 2 isofield steps. All real cycle are probably polytropic but a common nomenclature helps.

    Google Scholar 

  27. G.V. Brown, J. Appl. Phys. 47: 3673 (1976).

    Article  CAS  Google Scholar 

  28. G.V. Brown, IEEE Trans. iMagn. MAG-13, 1146 (1977).

    Google Scholar 

  29. K.C. Tolman and P.C. Fine, Rev. Mod. Phys. 20: 51 (1948).

    Article  CAS  Google Scholar 

  30. A. Bejan and J.L. Smith, Jr., Adv. Cryog. Eng. 21: 247 (1975)

    Google Scholar 

  31. A. Bejan; J. of Heat Transfer 99: 374 (1977).

    Article  CAS  Google Scholar 

  32. A. Bejan, in Advances in Heat Transfer, J.P. Hartnett and T.F. Irvine, Jr., (Eds.), Vol. 15, 1–58 (1982).

    Google Scholar 

  33. A. Bejan; Entropy Generation Through Heat and Fluid Flow; (J. Wiley and Sons, New York 1982 ).

    Google Scholar 

  34. R.A. Gaggioli and W.J. Wepfer; Energy 5, 823 (1980) (see also several other references by Gaggioli et al).

    Google Scholar 

  35. J.A. Barclay, NBS-SP-698, Mlay ‘85 (Eds. R. Radebaugh, B. Louie and S. McCarthy).

    Google Scholar 

  36. F.N. Mastrup; Lecture notes presented at workshop on Magnetic Refrigeration; Los Alamos National Laboratory, September, 1984.

    Google Scholar 

  37. J.A. Barclay; “A Comparison of Gas and Magnetic Refrigeration”, Proc. 22nd Heat Transfer Conf.; Niagara Falls, NY, Aug. 1984

    Google Scholar 

  38. M.E. Wood and W.H. Potter; Cryogenics 25: 667 (1985)

    Article  CAS  Google Scholar 

  39. J.A. Barclay and S. Sarangi; Cryog. Processes and Equipment, Pg. 51 (1984) - Proc. of ASME Cryog. Symposium Dec. 1984.

    Google Scholar 

  40. A.F. Lacaze, R. Beranger, G. Bon Mardion, G. Claudet and A.A. Lacaze,Cryogenics 23: 427 (1983).

    Article  CAS  Google Scholar 

  41. C.P. Taussig, G.R. Gallagher, J.L. Smith, Jr. and Y. Iwasa; Proc. 4th Int’l Cryocooler Conf., Easton, MD, Sept. 1986.

    Google Scholar 

  42. T. Hashimoto, T. Numazawa, and T. Maro; Adv. Cryo. Eng. 29: 597 (1984)

    Article  CAS  Google Scholar 

  43. N. Tamada, Y. Iwasa, Y. Watanabe, and J.L. Smith, Jr., Proc. ICEC1O, Helsinki, Eds. H. Collan, P. Berglund, M. Krusius, pg. 109 (1984).

    Google Scholar 

  44. S. Castles, NASA Rept. X–732–80–9, Feb. 1980 “Design of an adiabatic demagnetization refrigerator for studies in astrophysics”.

    Google Scholar 

  45. J.A. Barclay; Cryogenics 20: 467 (1980).

    Article  CAS  Google Scholar 

  46. W.A. Stewart; J. Appl. Phys. 49: 1216 and 1227 (1978).

    Google Scholar 

  47. T. Hashimoto; Adv. Cryog. Eng. 32: 261 (1986)

    Article  CAS  Google Scholar 

  48. J.A. Barclay and W.A. Steyert; Cryogenics 22: 73 (1982)

    Article  Google Scholar 

  49. T. Hashimoto, Cryog. Eng. (Japan) 20: 10 (1985) (In Japanese)

    Google Scholar 

  50. T. Hashimoto, T. Numazawa, M. Shino, and T. Okada; Cryogenics 21: 647 (1981)

    Article  CAS  Google Scholar 

  51. T. Yazawa, T. Numazawa, T. Hashimoto, T. Kurijama, H. Nakajome, and H. Ogiwara; Proc. ICEC11, Berlin (Butterworth, Guildford, U.K. 1986) pg. 275, also: R. Li et al. Adv. Cryog. Eng. 32: 287 (1986).

    Google Scholar 

  52. A. Tomokiyo, H. Tayama, T. Hashimoto, T. Aomine, M. Nishida, and S. Sakaguchi; Cryogenics 25: 271 (1985).

    Article  CAS  Google Scholar 

  53. B. Daudin, A.A. Lacaze, and B. Salce; Cryogenics 22: 439 (1982).

    Article  CAS  Google Scholar 

  54. C.B. Zimm, J.A. Barclay, and W.R. Johnson; J. Appl. Phys. 55: 2609 (1984).

    Article  CAS  Google Scholar 

  55. T. Kuzuhara, et.al.; Proc. ICEC11, Berlin (Butterworth, Guildford, U.K. 1986 ) pg. 280.

    Google Scholar 

  56. M. Sahashi, et.al.; Proc. INTERMAG ‘87, Tokyo, April 1987; paper DH-09 (to be published).

    Google Scholar 

  57. H. Osterreicher and F.T. Parker; J. Appl. Phys. 55: 4334 (1984)

    Article  Google Scholar 

  58. P.K. Ghosh and S.K. Dutta Roy; Indian J. of Pure and Applied Phys. 23: 362 (1985).

    CAS  Google Scholar 

  59. G.F. Green, W.G. Patton, and J. Stevens; The magnetocaloric effect of some rare earth metals, 1987 Crogenic Engineering Conference, St. Charles, IL.

    Google Scholar 

  60. P. Kittel, Cryogenics 20: 599 (1980).

    Article  Google Scholar 

  61. P. Kittel, J. Energy 4: 266 (1980).

    Article  Google Scholar 

  62. Castles, NASA Rept X–732–80–9, Feb. 1980.

    Google Scholar 

  63. P. Kittel, Physica 108B: 1115 (1981).

    CAS  Google Scholar 

  64. R.D. Britt and P.L. Richards; Intl. J. Infrared and Millimeter Waves 2: 1083 (1981).

    Article  CAS  Google Scholar 

  65. P. Kittel, Cryogenics 23: 477 (1983).

    Article  CAS  Google Scholar 

  66. P. Kittel, Adv. Cryog. Eng. 27: 745 (1982).

    Google Scholar 

  67. S. Castles, private communication.

    Google Scholar 

  68. W.P. Pratt, Jr., S.S. Rosenblum, W.A. Steyert, and J.A. Barclay, Cryogenics 17: 689 (1977).

    Article  CAS  Google Scholar 

  69. J.A. Barclay, O. [Vbze, and L. Paterson; J. Appl. Phys. 50: 5870 (1979).

    Article  CAS  Google Scholar 

  70. C. Delpuech, et al.; Cryogenics 21: 579 (1981).

    Article  CAS  Google Scholar 

  71. A.F. Lacaze, A.A. Lacaze, R. Beranger, and G. Bon Mardion; Proc. ICEC-9, Kobe, Japan ( Butterworth and Co., Guildford, UK 1982 ), pg. 14.

    Google Scholar 

  72. A. Lacaze, Doc. Ing. Thesis, Grenoble, Oct. 1982 (in French).

    Google Scholar 

  73. A.F. Lacaze, et al.; Adv. Cryog. Eng. 27: 703 (1982).

    Google Scholar 

  74. A.F. Lacaze, et al.; Cryogenics 23: 427 (1983).

    Article  CAS  Google Scholar 

  75. A.F. Lacaze, et al.; Adv. Cryog. Eng. 29: 573 (1984).

    Article  CAS  Google Scholar 

  76. Y. Hakuraku and H. Ogata; Jap. J. Appl. Phys. 25: 140 (1986).

    Article  CAS  Google Scholar 

  77. Y. Hakuraku and H. Ogata; J. Appl. Phys. 60: 3266 (1986).

    Article  CAS  Google Scholar 

  78. Y. Hakuraku and H. Ogata; Jap. J. Appl. Phys. 24: 1111 (1985).

    Article  Google Scholar 

  79. Y. Hakuraku and H. Ogata; Teion Kohgaku 19: 311 (1984), (in Japanese).

    Article  CAS  Google Scholar 

  80. C. Delpuech; Doc. Ing. Thesis, Grenoble, Nov. (1980) (in French).

    Google Scholar 

  81. Y. Hakuraku and H. Ogata; Cryogenics 26: 171 (1986).

    Article  CAS  Google Scholar 

  82. D.D. Deardorf and D.L. Johnson; TAD Progress Rept 42–78, Jet Propulsion Laboratory, April-June 1984.

    Google Scholar 

  83. H. Nakagome, et al.; Adv. Crog. Eng. 29: 581 (1984).

    Article  CAS  Google Scholar 

  84. H. Nakagome, et al.; Proc. ICEC-11, Berlin (Plenum Press, 1986 ) pg. 246

    Google Scholar 

  85. T. Kuriyama, et al.; Proc. ICEC-11, Berlin (Plenum Press, 1986 ) pg. 251

    Google Scholar 

  86. T. Numazawa, T. Hashimoto, and H. Nakagome; Adv. Cryog. Eng. 31: 771 (1986).

    Article  CAS  Google Scholar 

  87. J.A. Barclay, et.al.; Adv. Cryog. Eng. 31: 743 (1986).

    Article  CAS  Google Scholar 

  88. d. Nakagome, et al.; Adv. Cryog. Eng. 31: 753 (1986).

    Article  Google Scholar 

  89. T.F. Fujita, et al.; Adv. Cryog. Eng. 31: 763 (1986).

    Article  CAS  Google Scholar 

  90. F.N. Mastrup, Hughes Aircraft Company; private communication.

    Google Scholar 

  91. C.P. Taussig, G.R. Gallagher, J.L. Smith,.Jr., and Y. Iwasa Proc. 4th Int’l Cryocooler Conf., Easton, MD., Sept. 1986.

    Google Scholar 

  92. G.M. Claudet; Adv. Cryog. Eng. 31: 733 (1986).

    Article  CAS  Google Scholar 

  93. P. Seyfert; Grenoble; private communication.

    Google Scholar 

  94. J.A. Barclay, et.al.; Los Alamos National Laboratory Progress Reports; 1983–1984–1985; (unpublished).

    Google Scholar 

  95. T. Hashimoto et al., private communication; to be reported at the 1987 Cryogenic Engineering Conference.

    Google Scholar 

  96. G.V. Brown; J. Appl. Phys. 47: 3673 (1976).

    Article  CAS  Google Scholar 

  97. G.V. Brown; Am. Soc. of Heating, Refrig., and Air Cond., Engineers Trans. 87: 783 (1981).

    Google Scholar 

  98. J.A. Barclay and W.A. Steyert; Electric Power Research Institute Final Report EL-1757, April 1981.

    Google Scholar 

  99. S.S. Rosenblum, W.A. Steyert, and W.P. Pratt, Jr., Los Alamos National Laboratory Report, LA-6581 (May 1977).

    Google Scholar 

  100. G. Patton, G. Green, J. Stevens, and J. Humphrey; Proc. 4th Int’l Cryocooler Conf., Easton, MD, Sept. 1986.

    Google Scholar 

  101. L.D. Kirol; Idaho National Engineering Laboratory; private communication; the 1987 Cryogenic Engineering Conference.

    Google Scholar 

  102. W. Peschka; DFVLR; Stuttgart; private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barclay, J.A. (1988). Magnetic Refrigeration: A Review of a Developing Technology. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9874-5_88

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9874-5_88

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9876-9

  • Online ISBN: 978-1-4613-9874-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics