Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

The work by groups such as those of Ekwall et al. [1], Luzzati et al. [2] and Winsor [3], beginning in the 1930’s, laid the basis for our current perception of the phase behavior and structure of lyotropic amphiphilic liquid crystals. In particular, examples of mesophases with one-(lamellar), two-(hexagonal and rectangular), and three-(cubic) dimensional translational order were established. But the translationally invariant nematic phase, which is characterized by long range orientational order of nematogenic particles, was conspicuous by its absence. This has had both conceptual and practical implications for the manner in which our present day knowledge of amphiphilic systems has developed. For example, the difficulty of obtaining macroscopically aligned samples of the translationally ordered mesophases has imposed severe constraints on definitive experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Ekwall, Adv. Liq. Cryst. 1, 1 (1975).

    Google Scholar 

  2. V. Luzzati, in Biological Membranes, D. Chapman, ed. (Academic Press, London and New York, 1986), Ch. 3, p. 71.

    Google Scholar 

  3. P. A. Winsor, Solution Properties of Amphiphilic Coumpounds (Butterworth Press, London 1954); Chem. Rev. 68 1 (1968).

    Article  ADS  Google Scholar 

  4. K. D. Lawson and T. J. Flautt, J. Amer. Chem. Soc. 89 5489 (1967); P. J. Black, K. D. Lawson and T. J. Flautt, Mol. Cryst. Liq. Cryst. 7, 201 (1969).

    Google Scholar 

  5. F. Rosevear, J. Soc. Cosmet. Chem. 19, 581 (1968).

    Google Scholar 

  6. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

    Google Scholar 

  7. C. L. Khetrapal, A. C. Kunwar, A. S. Tracey and P. Diehl, in NMR-Basic Principles and Progress P. Diehl, E. Fluck and R. Kosfeld, eds. (Springer-Verlag, Heidelberg, 1975) Vol. 9, pp 1–85.

    Google Scholar 

  8. G. J. T. Tiddy, Phys. Rep. 57, 7 (1980).

    Google Scholar 

  9. J. Charvolin, A. M. Levelut, and E. T. Samulski, J. de Physique Lett. (Paris) 40, L-587 (1979).

    Article  Google Scholar 

  10. K. Radley and A. Saupe, Mol. Cryst. Liq. Cryst. 44, 227 (1978).

    Google Scholar 

  11. N. Boden, P. H. Jackson, K. McMullen, and M. C. Holmes, Chem. Phys. Lett. 65, 476 (1979).

    Article  ADS  Google Scholar 

  12. L. J. Yu and A. Saupe, Phys. Lett. 45, 1000 (1980).

    Article  Google Scholar 

  13. M. J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).

    Article  ADS  Google Scholar 

  14. T. C. Lubensky, Phys. Rev. A 2, 2497, (1970).

    Article  ADS  Google Scholar 

  15. C. S. Shih and R. Alben, J. Chem. Phys. 57, 3057 (1972).

    Article  ADS  Google Scholar 

  16. R. Alben, Phys. Rev. Lett. 30 778 (1973).

    Article  ADS  Google Scholar 

  17. J. P. Straley, Phys. Rev. A 10 1881 (1974).

    Article  ADS  Google Scholar 

  18. A. M. Figueiredo Neto, Y. Galerne, A. M. Levelut and L. Li¨¦bert, J. de Physique Lett. 46, 499 (1985).

    Article  Google Scholar 

  19. Y. Galerne, A. M. Figueiredo Neto, and M. Li¨¦bert, J. Chem. Phys. 87, 1851 (1987).

    Article  ADS  Google Scholar 

  20. Y. Hendrikx, J. Charvolin, and M. Rawiso, Phys. Rev. B 33 3534 (1986).

    Article  ADS  Google Scholar 

  21. Y. Galerne, Mol. Cryst. Liq. Cryst. 165 131 (1988).

    Google Scholar 

  22. L. Onsager, Ann. N.Y. Acad. Sci. 51 627 (1949).

    Article  ADS  Google Scholar 

  23. P. J. Flory, Proc. Roy. Soc. A234 60, 73 (1956)

    ADS  Google Scholar 

  24. P. J. Flory, in Polymer Liquid Crystals, A. Ciferri, W. R. Kirgbaum, and R. B. Meyer, eds. (Academic Press, New York, 1982) pp 103–112.

    Google Scholar 

  25. B. J. Forrest and L. W. Reeves, Chem. Rev. 81, 1 (1981).

    Article  Google Scholar 

  26. A. Saupe, Nuovo Cim. D. 3 16, (1984).

    Google Scholar 

  27. M Boidart, A. Hochapfel and M. Laurent, Mol. Cryst. Liq. Cryst. 154 61 (1988).

    Google Scholar 

  28. A. Saupe, Z. Naturforsch. 19a 161 (1964).

    ADS  Google Scholar 

  29. N. Boden, K. Radley and M. C. Holmes, Mol. Phys 42 493 (1981).

    Article  ADS  Google Scholar 

  30. N. Boden, K. McMullen, and M. C. Holmes, in Magnetic Resonance in Colloid and Interface Science, J. P. Fraissard and H. A. Resing, eds. (D. Reidel Publishing Co.) pp 667–673.

    Google Scholar 

  31. F. Y. Fujiwara and L. W. Reeves, Can. J. Chem. 56 2178 (1978).

    Article  Google Scholar 

  32. B. J. Forrest, L. W. Reeves and C. J. Robinson, J. Phys.Chem. 85 3244 (1981); M. E. Marcondes Helene and L. W. Reeves, Chem. Phys. Lett. 89 519 (1982).

    Google Scholar 

  33. A. R. Custodio and F. Y. Fujiwara, Mol. Cryst. Liq. Cryst. 139 321 (1986).

    Article  Google Scholar 

  34. K. Radley, L. W. Reeves and A. S. Tracey, J. Phys, Chem. 80 174 (1976).

    Google Scholar 

  35. N. Boden, R. J. Bushby, L. Ferris, C. Hardy and F. Sixl, Liq. Cryst. 1 109 (1986).

    Article  Google Scholar 

  36. N. Boden, R. J. Bushby, K. W. Jolley, M. C. Holmes and F. Sixl, Mol. Cryst. Liq. Cryst. 152 37 (1987).

    Google Scholar 

  37. J. Charvolin and J. F. Sadoc, J. Phys. Chem. 92 37 (1987).

    Google Scholar 

  38. Y. Hendrikx and J. Charvolin, J. de Physique 42 1427 (1981).

    Article  Google Scholar 

  39. M. R. Rizzatti and J. D. Gault, J. Colloid Interface Sci. 110 258 (1986).

    Article  Google Scholar 

  40. A. Hochapfel, M. Boidart and M. Laurent, Mol. Cryst. Liq. Cryst. 75, 201 (1981).

    Article  Google Scholar 

  41. N. Boden, R. J. Bushby and C. Hardy, J. Physique Lett. 46 L-325 (1985).

    Article  Google Scholar 

  42. N. Boden, R. J. Bushby, C. Hardy and F. Sixl, Chem. Phys. Lett. 123 359 (1986)

    Google Scholar 

  43. S. Chandrasekhar, Phil. Trans. R. Soc. A. 309 93 (1983).

    Article  ADS  Google Scholar 

  44. H Ringsdorf, B. Schlarb, and J. Venzmer, Angew. Chem. Int. Ed. Eng. 27 113 (1988).

    Google Scholar 

  45. H. Zimmerman, R. Poupko, Z. Luz, and J. Billard, Liq. Cryst. 6. 151 (1989).

    Article  Google Scholar 

  46. N. Boden, S. H. Corne and K. W. Jolley, J. Phys. Chem. 91 4092 (1987).

    Article  Google Scholar 

  47. N. Boden, K. W. Jolley and M. H. Smith, Liq. Cryst. 6 481 (1989).

    Article  Google Scholar 

  48. E. Everiss, G. J. T. Tiddy and B. A. Wheeler, J. Chem. Soc., Faraday Trans I. 72 1747 (1976).

    Google Scholar 

  49. K. Fontell and B. Lindman, J. Phys. Chem. 87 3289 (1983).

    Article  Google Scholar 

  50. H. Hoffmann, Ber. Bun. Phys. Chem. 88 1078 (1984).

    Google Scholar 

  51. K. Reizlein and H. Hoffmann, Progr. Coll. and Polym. Sci. 69 83 (1984).

    Google Scholar 

  52. M. A. Schafheutle and H. Finkelmann, Liq. Cryst. 3 1369 (1988).

    Article  Google Scholar 

  53. B.Lühmann and H. Finkelmann, Coll. and Polym. Sci. 264 189 (1986).

    Article  Google Scholar 

  54. Y. Hendrikx, J. Charvolin, M. Rawiso, L. Liebert and M. C. Holmes, J. Phys. Chem. 87 3991 (1983)

    Google Scholar 

  55. N. Boden and M. C. Holmes, Chem. Phys. Lett. 109 76 (1984).

    Article  ADS  Google Scholar 

  56. N. Boden, S. A. Corne, M. C. Holmes, P. H. Jackson, D. A. Parker and K. W. Jolley, J. de Physique 47 2135 (1986).

    Article  Google Scholar 

  57. M. C. Holmes, D. J. Reynolds and N. Boden, J. Phys. Chem. 91 5257 (1987).

    Article  Google Scholar 

  58. W. E. McMullen, W. M. Gelbart, and A. Ben-Shaul, J. Chem. Phys. 82 5616 (1985).

    Article  ADS  Google Scholar 

  59. W. M. Gelbart, W. E. McMullen and A. Ben-Shaul, J. de Physique, 46 1137 (1985).

    Article  Google Scholar 

  60. W. M. Gelbart, W. E. McMullen, A. Masters and A. Ben-Shaul, Langmuir 1 101 (1985).

    Article  Google Scholar 

  61. L. Herbst, H. Hoffmann, J. Kalus, K. Reizline, U. Schmeizer and K. Ibel, Ber. Bun. Phys. Chem. 89 1050 (1989).

    Google Scholar 

  62. M. J. Sammon, J. A. N. Zasadzinski and M. R. Kuzma, Phys. Rev. Lett. 57 2834 (1986).

    Article  ADS  Google Scholar 

  63. D. Frenkel and R. Eppenga, Phys. Rev. Lett. 49 1089 (1982); Mol. Phys. 52 1303 (1984).

    Google Scholar 

  64. C. Rosenblatt and N. Zolty, J. de Physique Lett. 46 L-1191 (1985).

    Article  Google Scholar 

  65. D. Goldfarb, M. M. Labes, Z. Luz and R. Poupko, Mol. Cryst. Liq. Cryst. 87 259 (1982).

    Article  Google Scholar 

  66. T. K. Attwood and J. E. Lydon, Mol. Cryst. Liq. Cryst. 108 349 (1984); T. K. Attwood and J. E. Lydon, Mol. Cryst. Liq. Cryst. Lett. 4 9 (1986); T. K. Attwood, J. E. Lydon and F. Jones, Liq. Cryst. 1 499 (1986).

    Google Scholar 

  67. M. C. Holmes, N. Boden and K. Radley, Mol. Cryst. Liq. Cryst. 100 93 (1983).

    Article  Google Scholar 

  68. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1977) pp. 150–155.

    Google Scholar 

  69. N. Boden and S. A. Jones, NATO ASI Sci. C. Maths Phys. Sci. 141 473 (1985).

    Google Scholar 

  70. H. Wennerström, G. Lindblom and B. Lindman, Chem. Scripta. 6 97 (1974).

    Google Scholar 

  71. H. Wennerström, G. Lindblom and B. Lindman, Chem. Scripta. 6 97 (1974); U. Henriksson, L. Odberg, J. C. Eriksson, and L. Westman, J. Phys. Chem. 81 76 (1977).

    Google Scholar 

  72. M. C. Holmes and J. Charvolin, J. Phys. Chem. 88 810 (1984).

    Article  Google Scholar 

  73. J. Charvolin, M. C. Holmes and D. J. Reynolds, Liq. Cryst. 3 1147 (1988).

    Article  Google Scholar 

  74. A. Guinier, X-ray Diffraction (Freeman, 1963), p. 72.

    Google Scholar 

  75. A. J. Leadbetter. in The Molecular Physics of Liquid Crystals,G. R. Luckhurst and G. W. Gray, eds. (Academic Press, 1979), p. 283.

    Google Scholar 

  76. C. Rosenblatt, S. Kumar and J. D. Litster, Phys. Rev. A. 29, 1010 (1984).

    Article  ADS  Google Scholar 

  77. C. Rosenblatt, Phys. Rev. A. 32, 1924 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  78. S. Kumar, L. J. Yu and J. D. Litster, Phys. Rev. Lett. 50, 1672 (1983).

    Article  ADS  Google Scholar 

  79. See, for example, E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Phys. Rep. 135 195 (1986).

    Article  ADS  Google Scholar 

  80. K. W. Jolley, M. H. Smith and N. Boden, Chem. Phys. Lett. 162 152 (1989).

    Article  ADS  Google Scholar 

  81. N. Boden, J. Clements, K. A. Dawson, K. W. Jolley and D. Parker, Phys. Rev. Lett. 66, 2883 (1991).

    Article  ADS  Google Scholar 

  82. J. Thoen and G. Menu, Mol. Cryst. Liq. Cryst. 97 163 (1983).

    Article  Google Scholar 

  83. C. Rosenblatt, Phys. Rev. A. 32, 1115 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  84. C. Rosenblatt and J. D. Litster, Phys. Rev. A. 26, 1809 (1982).

    Article  ADS  Google Scholar 

  85. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, 1976).

    Google Scholar 

  86. R. G. Priest and T. C. Lubensky, Phys. Rev. B. 13, 4158 (1976).

    Article  ADS  Google Scholar 

  87. B. D. Larson and J. D. litster, Mol. Cryst. Liq. Cryst. 113 13 (1984).

    Article  Google Scholar 

  88. N. Boden, S. A. Corne and K. W. Jolley, Chem. Phys. Lett. 105 99 (1984).

    Article  ADS  Google Scholar 

  89. N. Boden, D. Parker and K. W. Jolley, Mol. Cryst. Liq. Cryst. 152 121 (1987).

    Google Scholar 

  90. H. Fricke, Phys. Rev. 24, 575 (1924); J. Phys. Chem. 57 934 (1953).

    Google Scholar 

  91. Y. Galerne and J. P. Marcerou, Phys. Rev. Lett. 51 2109 (1983).

    Article  ADS  Google Scholar 

  92. Y. Galerne, A. M. Figueiredo Neto and L. Liebert, Phys. Rev. A. 31, 4047 (1985).

    Article  ADS  Google Scholar 

  93. G. R. Luckhurst, in The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray, eds. (Academic Press, 1979), p. 85.

    Google Scholar 

  94. A. de Vries, J. Chem. Phys. 56, 4489 (1972).

    Article  ADS  Google Scholar 

  95. M. Warner, Mol. Phys. 52, 677 (1984).

    Article  ADS  Google Scholar 

  96. W. M. Gelbart and B. Barboy, Acc. Chem. Res. 13, 290 (1980); W. M. Gelbart and A. Ben-Shaul, J. Chem. Phys. 77 914 (1982); W. M. Gelbart, J. Phys. Chem. 86 4298 (1982).

    Google Scholar 

  97. M. R. Kuzma, W. M. Gelbart and Z.-Y. Chen, Phys. Rev. A. 34, 2531 (1986).

    Article  ADS  Google Scholar 

  98. W. Maier and A. Saupe, Z. Naturforsch A14, 882 (1959).

    ADS  Google Scholar 

  99. M. R. Fisch, S. Kumar and J. D. Litster, Phys. Rev. Lett. 57, 2830 (1986).

    Article  ADS  Google Scholar 

  100. P. J. Photinos and A. Saupe, J. Chem. Phys. 90, 5011 (1989).

    Article  ADS  Google Scholar 

  101. W. L. McMillan, Phys. Rev. A 4, 1238 (1971); 6, 936 (1972).

    ADS  Google Scholar 

  102. D. Parker, Ph.D. Thesis, University of Leeds, (1988).

    Google Scholar 

  103. W. L. McMillan, Phys. Rev A 9, 1720 (1974).

    Article  ADS  Google Scholar 

  104. A. F. Martins, A. C. Diogo and N. P. Vaz, Ann. Phys. 3, 361 (1978).

    Google Scholar 

  105. P. G. de Gennes, Sol. State Comm. 10, 753 (1972).

    Article  ADS  Google Scholar 

  106. F. Brochard, J. de Physique 34, 901 (1973).

    Article  Google Scholar 

  107. F. Jähnig and F. Brochard, J. de Physique 35, 301 (1974).

    Article  Google Scholar 

  108. A. Saupe, P. Boonbrahm and L. J. Yu, J. Chim. Phys. 80, 3 (1983).

    Google Scholar 

  109. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd Edn. Part 1 (Pergamon Press, Oxford, 1985) chap. 14, p.497.

    Google Scholar 

  110. T. C. Lubensky and R. G. Priest, Phys. Rev B 13, 4139 (1976).

    Google Scholar 

  111. K. Radley and A. Saupe, Mol. Phys. 35, 1405 (1978).

    Article  ADS  Google Scholar 

  112. A. M. Figueiredo Neto, Y. Galerne and L. Li¨¦bert, J. Phys. Chem. 89, 3939 (1985).

    Article  Google Scholar 

  113. N. Boden, P. J. B. Edwards and K. W. Jolley, in ¡°Structure and Dynamics of Supramolecular Aggregates and Strongly Interacting Colloids¡±, S. H. Chen, J. S. Huang, and P. Tartagli, eds. (Klure and Dordrect, 1992).

    Google Scholar 

  114. M. P. Taylor and J. Herzfeld, Phys. Rev. A, 43, 1892 (1991).

    Article  ADS  Google Scholar 

  115. T. Odijk, J. de Physique 48, 125 (1987).

    Article  Google Scholar 

  116. R. Hentschke, Liq. Cryst. 10, 691 (1991).

    Article  Google Scholar 

  117. R. G. Priest and T. C. Lubensky, Phys. Rev. B13, 4159 (1976).

    ADS  Google Scholar 

  118. C. A. Vause, Phys. Rev. A30, 2645 (1984).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Boden, N. (1994). Micellar Liquid Crystals. In: Gelbart, W.M., Ben-Shaul, A., Roux, D. (eds) Micelles, Membranes, Microemulsions, and Monolayers. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8389-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8389-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8391-8

  • Online ISBN: 978-1-4613-8389-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics