Skip to main content

Ion-Coupled Transport across Biological Membranes

  • Chapter
Physiology of Membrane Disorders

Abstract

Only a rudimentary understanding of the principles of classical thermodynamics is needed to appreciate that the flow of an uncharged substance from a region of lower concentration to a region of higher concentration or the flow of a charged substance from a region of lower electrochemical potential to a region of higher electrochemical potential cannot take place unless the processes responsible for these flows are linked or coupled to a supply of energy. Such flows, loosely referred to as “active” or “uphill,” are commonplace in biological systems and the thrust of many investigations is to identify the immediately responsible source(s) of energy. The problem can perhaps be best stated in terms of the formalism of irreversible or nonequilibrium thermodynamics.(1) Thus, in a system in which there is only a single flow of a substance i we may write the straight phenomenologic coefficient relating the flow to the conjugate force and has units of conductance; R ii relates the force to the flow and has units of resistance. Clearly, in this simple system R ii = 1/L ii . Ohm’s law of current flow, Fick’s first law of diffusion, Fourier’s law of heat flow, and Poiseuille’s law of volume flow are but a few familiar examples of Eq. (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katchalsky, A., and P. F. Curran. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  2. Kedem, O. 1961. Criteria of active transport. In: Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, eds. Czech. Acad. Sci., Prague, pp. 87 – 93.

    Google Scholar 

  3. Rosenberg, T. 1948. On accumulation and active transport in biological systems. I. Thermodynamic considerations. Acta Chem. Scand. 2: 14 – 33.

    Article  CAS  Google Scholar 

  4. Curran, P. F., and S. G. Schultz. 1968. Transport across membranes: General principles. In: Handbook of Psysiology, Section 6, The Alimentary Canal, Vol. Ill: Intestinal Absorption. C. F. Code, ed. Am. Physiol. Soc., Washington, D.C. Chap. 65, pp. 1217 – 1243.

    Google Scholar 

  5. Schultz, S. G. 1968. Mechanisms of absorption. In: Biological Membranes. R. M. Dowben, ed. Little, Brown, Boston, pp. 59 – 108.

    Google Scholar 

  6. Mitchell, P. 1970. Reversible coupling between transport and chemical reactions. In: Membranes and Ion Transport, Vol. 1. E. E. Bittar, ed. Wiley (Interscience), New York. pp. 192 – 256.

    Google Scholar 

  7. Wilbrandt, W., and T. Rosenberg. 1965. The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13: 109 – 183.

    Google Scholar 

  8. Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50: 637 – 718.

    PubMed  CAS  Google Scholar 

  9. Kimmich, G. A. 1973. Coupling between Na and sugar transport in small intestine. Biochim. Biophys. Acta 300: 31 – 78.

    PubMed  CAS  Google Scholar 

  10. Christensen, H. N., C. DeCespedes, M. E. Handlogten, and G. Ronquist. 1973. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell. Biochim. Biophys. Acta 300: 487 – 522.

    PubMed  CAS  Google Scholar 

  11. Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36: 172 – 230.

    PubMed  CAS  Google Scholar 

  12. Boos, W. 1974. Bacterial transport. Annu. Rev. Biochem. 43: 123 – 146.

    Article  PubMed  CAS  Google Scholar 

  13. Slayman, C. L. 1974. Proton pumping and generalized energetics of transport: A review. In: Membrane Transport in Plants. E. Zimmerman and J. Dainty, eds. Springer-Verlag, Berlin/New York. pp. 107 – 119.

    Google Scholar 

  14. Heinz, E. 1972. Na-Linked Transport of Organic Solutes. Springer-Verlag, Berlin/New York.

    Book  Google Scholar 

  15. Eddy, A. A. 1968. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites tumor cells in the presence of sodium cyanide. Biochem. J. 108: 195 – 206.

    PubMed  CAS  Google Scholar 

  16. Schafer, J. A., and J. A. Jacquez. 1967. Change in Na uptake during amino acid transport. Biochim. Biophys. Acta 135: 1081 – 1083.

    Article  PubMed  CAS  Google Scholar 

  17. Vidaver, G. A. 1964. Some tests of the hypothesis that the sodium ion gradient furnishes the energy for glycine active transport by pigeon red cells. Biochemistry 3: 803 – 808.

    Article  PubMed  CAS  Google Scholar 

  18. Curran, P. F., S. G. Schultz, R. A. Chez, and R. E. Fuisz. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. Gen. Physiol. 50: 1261 – 1286.

    Article  PubMed  CAS  Google Scholar 

  19. Peterson, S. C., A. M. Goldner, and P. F. Curran. 1970. Glycine transport in rabbit ileum. Am. J. Physiol. 219: 1027 – 1032.

    PubMed  CAS  Google Scholar 

  20. Frizzell, R. A., H. N. Nellans, and S. G. Schultz. 1973. Effects of sugars and amino acids on sodium and potassium influx in rabbit ileum. J. Clin. Invest. 52: 215 – 217.

    Article  PubMed  CAS  Google Scholar 

  21. Rose, R. C., and S. G. Schultz. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmu- cosal electrical potential differences. J. Gen. Physiol. 57: 639 – 663.

    Article  PubMed  CAS  Google Scholar 

  22. White, J. F., and W. McD. Armstrong. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 221: 194 – 201.

    PubMed  CAS  Google Scholar 

  23. Samarzija, I., and E. Fromter. 1975. Electrical studies on amino acid transport across brush border membrane of rat proximal tubule in vivo. Pfluegers Arch. 359:R 119.

    Google Scholar 

  24. Goldner, A. M., S. G. Schultz, and P. F. Curran. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. Gen. Physiol. 53: 362 – 283.

    Google Scholar 

  25. Maruyama, T., and T. Hoshi. 1972. The effect of D- glucose on the electrical potential profile across the proximal tubule of Newt kidney. Biochim. Biophys. Acta 282: 214 – 225.

    Article  PubMed  CAS  Google Scholar 

  26. Fromter, E., and K. Luer. 1973. Electrical studies on sugar transport kinetics of rat proximal tubule. Pfluegers Arch. 343: R47.

    Google Scholar 

  27. Berger, E., E. Long, and G. Semenza. 1972. The sodium activation of biotin absorption in hamster small intestine in vitro. Biochim. Biophys. Acta 255: 873 – 887.

    Article  CAS  Google Scholar 

  28. Holt, P. R. 1964. Intestinal absorption of bile salts in the rat. Am. J. Physiol. 207: 1 – 7.

    PubMed  CAS  Google Scholar 

  29. Matthews, D. M. 1975. Intestinal transport of peptides. In: Intestinal Absorption and Malabsorption. T. Z. Csaky, ed. Raven Press, New York. pp. 95 – 111.

    Google Scholar 

  30. Rubino, A., M. Field, and H. Shwachman. 1971. Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J. Biol. Chem. 246: 3542 – 3548.

    PubMed  CAS  Google Scholar 

  31. Berndt, W. O., and E. C. Beechwood. 1965. Influence of inorganic electrolytes and ouabain on uric acid transport. Am. J. Physiol. 208: 642 – 648.

    PubMed  CAS  Google Scholar 

  32. Quastel, J. H. 1965. Molecular transport at cell membranes. Proc. R. Soc. Lond. 1636: 169 – 196.

    Google Scholar 

  33. Schultz, S. G., R. A. Frizzell, and H. N. Nellans. 1974. Ion transport by mammalian small intestine. Annu. Rev. Physiol. 36: 51 – 91.

    Article  PubMed  CAS  Google Scholar 

  34. Nellans, H. N., R. A. Frizzell, and S. G. Schultz. 1973. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am. J. Physiol. 225: 467 – 475.

    PubMed  CAS  Google Scholar 

  35. Frizzell, R. A., M. Dugas, and S. G. Schultz. 1975. Sodium chloride transport by rabbit gallbladder: Direct evidence for a coupled NaCl influx process. J. Gen. Physiol. 65: 769 – 795.

    Article  PubMed  CAS  Google Scholar 

  36. Nellans, H. N., R. A. Frizzell, and S. G. Schultz. 1974. Brush border processes and transepithelial Na and CI transport by rabbit ileum. Am. J. Physiol. 226: 1131–1141.

    PubMed  CAS  Google Scholar 

  37. Blaustein, M. P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70: 33 – 82.

    Article  PubMed  CAS  Google Scholar 

  38. Alexander, W. D., and J. Wolff. 1964. Cation requirements for iodide transport. Arch. Biochem. Biophys. 106: 525 – 526.

    Article  PubMed  CAS  Google Scholar 

  39. Siegenthaler, P. A., M. M. Belsky, and S. Goldstein. 1967. Phosphate uptake in an obligately marine fungus: A specific requirement for sodium. Science 155: 93 – 94.

    Article  PubMed  CAS  Google Scholar 

  40. West, I. C., and P. Mitchell. 1973. Stoichiometry of lactose-H symport across the plasma membrane of Escherichia coli. Biochem. J. 132: 587 – 592.

    CAS  Google Scholar 

  41. Kashket, E. R., and T. H. Wilson. 1973. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. U.S.A. 70: 2866 – 2869.

    Article  PubMed  CAS  Google Scholar 

  42. Asghar, S. S., E. Levin, and F. M. Harold. 1973. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force. J. Biol. Chem. 248: 5225 – 5233.

    PubMed  CAS  Google Scholar 

  43. Seaston, A., C. Inkson, and A. A. Eddy. 1973. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem. J. 134: 1031 – 1043.

    PubMed  CAS  Google Scholar 

  44. Eddy, A. A., and J. A. Nowacki. 1971. Stoichiometrical proton and potassium movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem. J. 122: 701 – 711.

    CAS  Google Scholar 

  45. Slayman, C. L., and C. W. Slayman. 1974. Depolarization of the plasma membrane of Neurospora during active transport of glucose: Evidence for a proton- dependent co-transport system. Proc. Natl. Acad. Sci. U.S.A. 71: 1935 – 1939.

    Article  PubMed  CAS  Google Scholar 

  46. Komor, E., and W. Tanner. 1974. The hexose-proton cotransport system of Chlorella. J. Gen. Physiol. 64: 568 – 581.

    Article  CAS  Google Scholar 

  47. Harold, F. M., and J. R. Baarda. 1968. Inhibition of membrane transport in Streptococcus faecalis by micouplers of oxidate phosphorylation and its relationship to proton conduction. J. Bacteriol. 96: 2025 – 2034.

    PubMed  CAS  Google Scholar 

  48. Riggs, T. R., L. M. Walker, and H. N. Christensen. 1958. Potassium migration and amino acid transport. J. Biol. Chem. 233: 1479 – 1484.

    PubMed  CAS  Google Scholar 

  49. Crane, R. K. 1965. Na-dependent transport in the intestine and other animal tissues. Fed. Proc. 24:1000– 1005.

    Google Scholar 

  50. Eddy, A. A. 1968. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites tumour cells in the presence and absence of sodium cyanide. Biochem. J. 108: 489 – 498.

    PubMed  CAS  Google Scholar 

  51. Hajjar, J. J., A. S. Lamont, and P. E. Curran. 1970. The sodium-alanine interaction in rabbit ileum: Effect of sodium on alanine fluxes. J. Gen. Physiol. 55:277– 296.

    Google Scholar 

  52. Murer, H., and U. Hopfer. 1973. Interaction between sugar and amino acid transport in the small intestine. In: Biochemical and Clinical Aspects of Peptide and Amino Acid Absorption. K. Rommel and H. Goebell, eds. Schattauer Verlag, Stuttgart, pp. 61 – 65.

    Google Scholar 

  53. Murer, H., U. Hopfer, E. Kinne-Saffran, and R. Kinne. 1974. Glucose transport in isolated brush-border and lateral basal plasma membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta 345: 170 – 179.

    Article  PubMed  CAS  Google Scholar 

  54. Sigrist-Nelson, K., H. Murer, and U. Hopfer. 1975. Active alanine transport in isolated brush border membranes. J. Biol. Chem. 250: 5674 – 5680.

    PubMed  CAS  Google Scholar 

  55. Kinne, R., H. Murer, E. Kinne-Saffran, M. Thees, and G. Sachs. 1975. Sugar transport by renal plasma membrane vesicles. J. Membr. Biol. 21: 375 – 395.

    Article  CAS  Google Scholar 

  56. Aronson, P. S., and B. Sacktor. 1975. The Na gradient dependent transport of D-glucose in renal brush border membranes. J. Biol. Chem. 250: 6032 – 6039.

    PubMed  CAS  Google Scholar 

  57. Colombini, M., and R. M. Johnstone. 1974. Na-gradient-stimulated AIB transport in membrane vesicles fromEhrlich ascites cells. J. Membr. Biol. 18: 315 – 334.

    Article  PubMed  CAS  Google Scholar 

  58. Eddy, A. A. 1969. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites tumour cells. Biochem. J. 115: 505 – 509.

    PubMed  CAS  Google Scholar 

  59. Curran, P. F., J. J. Hajjar, and I. M. Glynn. 1970. The sodium-alanine interaction in rabbit ileum: Effect of alanine on sodium fluxes. J. Gen. Physiol. 55: 297 – 308.

    Article  PubMed  CAS  Google Scholar 

  60. Potaschner, S. J., and R. M. Johnstone. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells. Biochim. Biophys. Acta 233: 91 – 103.

    Article  Google Scholar 

  61. Johnstone, R. M. 1972. Transport of amino acids in Ehrlich cells and mouse pancreas. In: Na-Linked Transport of Organic Solutes. E. Heinz, ed. Springer- Verlag, Berlin, pp. 51 – 67.

    Chapter  Google Scholar 

  62. Schafer, J. A., and E. Heinz. 1971. The effect of reversal of Na and K electrochemical gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim. Biophys. Acta 249: 15 – 33.

    Article  PubMed  CAS  Google Scholar 

  63. Jacquez, J. A., and J. A. Schafer. 1969. Na and K electrochemical potential gradients and the transport of a-aminoisobutyric acid in Ehrlich ascites tumor cells. Biochim. Biophys. Acta 193: 368 – 383.

    Article  PubMed  CAS  Google Scholar 

  64. Ronquist, G., and H. N. Christensen. 1973. Amino acid stimulation of alkali-metal-independent ATP cleavage by an Ehrlich cell membrane preparation. Biochim Biophys. Acta 323: 337 – 341.

    Article  PubMed  CAS  Google Scholar 

  65. Forte, J. G., T. M. Forte, and E. Heinz. 1973. Isolation of plasma membranes from Ehrlich ascites tumor cells. Influence of amino acids on (Na+K)-ATPase and K- stimulated phosphatase. Biochim. Biophys. Acta 298: 827 – 841.

    Article  PubMed  CAS  Google Scholar 

  66. Geek, P., E. Heinz, and B. Pfeiffer. 1974. Evidence against direct coupling between amino acid transport and ATP hydrolysis. Biochim. Biophys. Acta 339:419– 425.

    Google Scholar 

  67. Lev, A. A., and W. McD. Armstrong. 1975. Ionic activities in cells. In: Current Topics in Membranes and Transport, Vol. 6. F. Bronner and A. Kleinzeller, eds. Academic Press, New York. pp. 59 – 123.

    Google Scholar 

  68. Itoh, S., and I. L. Schwartz. 1957. Sodium and potassium distribution in isolated thymus nucleii. Am. J. Physiol. 188: 490 – 498.

    PubMed  CAS  Google Scholar 

  69. Pietrzyk, C., and E. Heinz. 1974. The sequestration of Na, K and CI in the cellular nucleus and its energetic consequences for the gradient hypothesis of amino acid transport in Ehrlich cells. Biochim. Biophys. Acta 352: 397 – 411.

    Article  PubMed  CAS  Google Scholar 

  70. Murer, H., and U. Hopfer. 1974. Demonstration of electrogenic Na-dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. U.S.A. 71: 484 – 488.

    Article  PubMed  CAS  Google Scholar 

  71. Beck, J. 1975. Electrogenic Na-dependent D-glucose transport by isolated renal cortex brush border membranes. Fed. Proc. 34: 286.

    Google Scholar 

  72. Gibb, L. E., and A. A. Eddy. 1972. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients. Biochem J. 129: 979 – 981.

    PubMed  CAS  Google Scholar 

  73. Reid, M., L. E. Gibb, and A. A. Eddy. 1974. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumor cells. Biochem. J. 140: 383 – 393.

    PubMed  CAS  Google Scholar 

  74. Morville, M., M. Reid, and A. A. Eddy. 1973. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate. Biochem. J. 134: 11 – 26.

    PubMed  CAS  Google Scholar 

  75. Philo, R. D., and A. A. Eddy. 1975. The electrogenicity of amino acid absorption in mouse ascites-tumour cells. Biochem. Soc. Trans. 3: 904 – 906.

    CAS  Google Scholar 

  76. DeCespedes, C., and H. N. Christensen. 1974. Complexity in valinomycin effects on amino acid transport. Biochim. Biophys. Acta 339: 139 – 145.

    Article  CAS  Google Scholar 

  77. Smith, T. C., and C. Levinson. 1975. Direct measurement of the membrane potential of Ehrlich ascites tumor cells: Lack of an effect on valinomycin and ouabain. J. Membr. Biol. 23: 349 – 365.

    Article  PubMed  CAS  Google Scholar 

  78. Lassen, U. V., A. -M. T. Nielsen, L. Pape, and L. O. Simonsen. 1971. The membrane potential of Ehrlich ascites tumor cells. J. Membr. Biol. 6: 269 – 288.

    Article  Google Scholar 

  79. Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13 – 55.

    Article  PubMed  CAS  Google Scholar 

  80. Thomas, R. C. 1972. Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52: 563 – 594.

    PubMed  CAS  Google Scholar 

  81. Jacquez, J. A., and S. G. Schultz. 1974. A general relation between membrane potential, ion activities and pump fluxes for symmetric cells in a steady state. Math. Biosci. 20: 19 – 25.

    Article  CAS  Google Scholar 

  82. Reid, M., and A. A. Eddy. 1971. Apparent metabolic regulation of the coupling between the potassium ion gradient and methionine transport in mouse ascites- tumor cells. Biochem. J. 124: 951 – 952.

    PubMed  CAS  Google Scholar 

  83. Heinz, E., P. Geek, and C. Pietrzyk. 1975. Driving forces of amino acid transport in animal cells. Ann. N.Y. Acad. Sci. 264: 428 – 441.

    Article  PubMed  CAS  Google Scholar 

  84. Armstrong, W. McD., B. J. Byrd, and P. M. Hamang. 1973. Energetic adequacy of Na gradients for sugar accumulation in epithelial cells of small intestine. Biochim. Biophys. Acta 330: 237 – 241.

    Article  PubMed  CAS  Google Scholar 

  85. Heinz, E., and P. Geek. 1974. The efficiency of energetic coupling between Na flow and amino acid transport in Ehrlich cells—A revised assessment. Biochim. Biophys. Acta 339: 426 – 431.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Schultz, S.G. (1978). Ion-Coupled Transport across Biological Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics