Skip to main content
Log in

Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Plasma membrane vesicles derived from Ehrlich ascites cells can accumulate 2-aminoisobutyric acid (AIB) twofold, in the absence of ion gradients or potential differences. In addition, AIB uptake is stimulated specifically by the presence of a Na+ chemical gradient (high Na+ outside). The nature of the counterion (e.g., K+, Li+, Cs+, or ethanolamine) inside the vesicle does not affect the qualitative response although quantitative differences are observed. The level of AIB present in the vesicle decreases as the Na+-gradient is dissipated. Gramicidin, which increases the rate of ion gradient dissipation, inhibits the gradient-stimulated uptake. Valinomycin stimulates AIB uptake when Na+ is present outside the vesicles and K+ is inside, probably by producing a diffusion potential which increases the electrochemical potential difference for Na+. As the Na+-gradient dissipates, AIB accumulation exceeds that predicted from 100% transfer of the energy from the Na+ chemical gradient if a 1∶1 relationship between amino acid and Na+ coupling exists. It is possible that a diffusion potential adds to the chemical gradient for Na+ making the electrochemical potential difference for Na+ adequate to energize AIB accumulation. Ouabain inhibits gradient-stimulated AIB uptake without measurable effects on the ion distributions, thus showing a direct action of ouabain on amino acid transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bittner, J., Heinz, E. 1963. Die Wirkung von 9-Strophantin auf den Glyzintransport in Ehrlich-Ascites.Biochim. Biophys. Acta 74:392

    PubMed  Google Scholar 

  • Bray, G. A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Analyt. Biochem. 1:279

    Google Scholar 

  • Chez, R. A., Palmer, R. R., Schultz, S. G., Curran, P. F. 1967. Effect of inhibitors on alanine transport in isolated rabbit ileum.J. Gen. Physiol. 50:2357

    PubMed  Google Scholar 

  • Colombini, M., Johnstone, R. M. 1973. Preparation and properties of the (Na++K+)-ATPase of plasma membranes from Ehrlich ascites cells.Biochim. Biophys. Acta 323:69

    PubMed  Google Scholar 

  • Colombini, M., Johnstone, R. M. 1974. Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells.J. Membrane Biol. 15:261

    Google Scholar 

  • Crane, R. K., Field, R. A., Cori, C. F. 1957. Studies of tissue permeability. I. The penetration of sugars into Ehrlich ascites tumor cells.J. Biol. Chem. 224:649

    PubMed  Google Scholar 

  • Crane, R. K., Miller, D., Bihler, I. 1961. The restrictions on possible mechanisms of intestinal active transport of sugars.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 439. Academic Press Inc., London

    Google Scholar 

  • Eddy, A. A. 1968. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumor cells in the presence and absence of sodium cyanide.Biochem. J. 108:489

    PubMed  Google Scholar 

  • Eddy, A. A., Mulcahy, M. F., Thompson, P. J. 1967. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.Biochem. J. 103:863

    PubMed  Google Scholar 

  • Gibb, L. E., Eddy, A. A. 1972. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients.Biochem. J. 129:979

    PubMed  Google Scholar 

  • Goldner, A. M., Hajjar, J. J., Curran, P. F. 1972. Effects of inhibitors on 3-O-methyl-glucose transport in rabbit ileum.J. Membrane Biol. 10:267

    Google Scholar 

  • Jacquez, J. A., Schafer, J. A. 1969. Na+ and K+ electrochemical potential gradients and the transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 193:368

    PubMed  Google Scholar 

  • Johnstone R. M. 1972. Glycine accumulation in absence of Na+ and K+ gradients in Ehrlich ascites cells.Biochim. Biophys. Acta 282:366

    PubMed  Google Scholar 

  • Johnstone, R. M. 1974. Role of ATP on the initial rate of amino acid uptake in Ehrlich ascites cells.Biochim. Biophys. Acta (In press)

  • Kimmich, G. A. 1973. Coupling between Na+ and sugar transport in small intestine.Biochim. Biophys. Acta 300:31

    PubMed  Google Scholar 

  • Kimmich, G. A., Randles, J. 1973a. Effect of K+ and K+ gradients on accumulation of sugars by isolated intestinal epithelial cells.J. Membrane Biol. 12:23

    Google Scholar 

  • Kimmich, G. A., Randles, J. 1973b. Interaction between Na+-dependent transport systems for sugars and amino acids. Evidence against a role for the sodium gradient.J. Membrane Biol. 12:47

    Google Scholar 

  • Lin, K. T., Johnstone, R. M. 1971. Active transport of glycine by mouse pancreas. Evidence against the Na+ gradient hypothesis.Biochim. Biophys. Acta 249:144

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr A. L., Randall, R. J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Miller, P., Rudin, D. O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398

    PubMed  Google Scholar 

  • Potashner, S., Johnstone, R. M. 1970. Cations, transport and exchange diffusion of methionine in Ehrlich ascites cells.Biochim. Biophys. Acta 203:445

    PubMed  Google Scholar 

  • Potashner, S., Johnstone, R. M. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.Biochim. Biophys. Acta 233:91

    PubMed  Google Scholar 

  • Reid, M., Eddy, A. A. 1971. Apparent metabolic regulation of the coupling between the potassium ion gradient and methionine transport in mouse ascites-tumour cells.Biochem. J. 124:951

    Google Scholar 

  • Riggs, T. G., Walker, L. M. Christensen, H. N. 1958. Potassium migration and amino acid transport.J. Biol. Chem. 233:1479

    PubMed  Google Scholar 

  • Schafer, J. A., Heinz, E. 1971. The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 249:15

    PubMed  Google Scholar 

  • Schultz, S. G., Curran, P. F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    PubMed  Google Scholar 

  • Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta 23:394

    PubMed  Google Scholar 

  • Terry, P. M., Vidaver, G. A. 1973. The effect of gramicidin on sodium-dependent accumulation of glycine by pigeon red cells: A test of the cation gradient hypothesis.Biochim. Biophys. Acta 323:441

    PubMed  Google Scholar 

  • Tucker, A. M., Kimmich, G. A. 1973. Characteristics of amino acid accumulation by isolated intestinal epithelial cells.J. Membrane Biol. 12:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombini, M., Johnstone, R.M. Na+-gradient-stimulated AIB transport in membrane vesicles from Ehrlich ascites cells. J. Membrain Biol. 18, 315–334 (1974). https://doi.org/10.1007/BF01870120

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870120

Keywords

Navigation