Skip to main content

Neuronal Coexistence of Peptides with Other Putative Transmitters

  • Chapter
Handbook of Psychopharmacology

Abstract

For many years it has been considered a dogma in neuropharmacology that “a given neuron stores and releases only one chemical transmitter at each of its terminals.” Although often referred to as “Dale’s principle,” this concept was never proposed by Sir Henry Dale, who in fact merely suggested that primary sensory neurons might utilize the same chemical transmitter at both their central and peripheral terminals (Dale, 1935).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alumets, J., Hakanson, R., Malmfors, G., and Sundler, F., 1979. Enkephalin in peripheral nerves, endocrine cells, and endocrine tumors. An immunohistochemical stud), in: Molecular Endocrinology ( I. Maclntyre and M. Szelke, eds.), pp. 77–90, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Alumets, J., Hakanson, R., Malmfors, G., and Sundler, F., 1979. Enkephalin in peripheral nerves, endocrine cells, and endocrine tumors. An immunohistochemical stud), in: Molecular Endocrinology ( I. Maclntyre and M. Szelke, eds.), pp. 77–90, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Aspeslagh, M. R., Vandesande, F., and Dierickx, F., 1976, Electron-microscopic immune-cytochemical demonstration of separate neurophysin-vasopressinergic and neurophysin-oxytocinergic nerve fibers in the neural lobe of the rat hypophysis, Cell Tissue Res. 171: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J., 1971, Noradrenaline: fate and control of its biosynthesis, Science 173: 598–606.

    Article  PubMed  CAS  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Roberts, S., and Leeman, S. E., 1979, The origin, distribution, and synaptic relationships of substance P axons in rat spinal cord, J. Comp. Neurol. 184: 331–352.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann, W., and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Sci. 39: 255–259.

    Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U., 1971, Long-lasting, selective depletion of brain serotonin by 5,6-dihydroxytryptamine, Acta Physiol. Scand. Suppl. 373: 1–15.

    PubMed  CAS  Google Scholar 

  • Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., and Nobin, A., 1973, Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurones in the rat CNS, Act. Physiol. Scand. Suppl. 391: 1–19.

    CAS  Google Scholar 

  • Beinfeld, M. C., Meyer, D. K., and Brownstein, M. J., 1980, Cholecystokinin octapeptide in the rat hypothalamo-neurohypophyseal system, Nature (London) 288: 376–378.

    Article  CAS  Google Scholar 

  • Björklund, A. J., Emson, P. C., Gilbert, R. F. T., and Skagerberg, G., 1979, Further evidence for the possible coexistence of 5-hydroxytryptamine and substance P in medullary raphe neurones of rat brain, Br. J. Pharmacol. 63: 112–113 P.

    Google Scholar 

  • Bloch, B., Bugnon, C., Fellman, D., and Lenys, D., 1978, Immunocytochemical evidence that the same neurons in the human infundibular nucleus are stained with antiendorphins and antisera to other related peptides, Neurosci. Lett. 10: 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., Battenberg, E. L. F., Shibasaki, T., Benoit, R., Ling, N., and Guillemin, R., 1980, Localization of γ-melanocyte-stimulating hormone (γ-MSH) immunoreactivity in rat brain and pituitary, Regul. Peptides 1: 205–222.

    Article  CAS  Google Scholar 

  • Bloom, S. R., and Edwards, A. V., 1980, Vasoactive intestinal polypeptide in relation to atropine-resistant vasodilatation in the submaxillary gland of the cat, J. Physiol. (London) 300: 41–53.

    CAS  Google Scholar 

  • Bowker, R. M., Steinbusgh, H. W. M., and Coulter, J. D., 1981, Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method, Brain Res. 211: 412–417.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M. J., 1980, Adrenocorticotropic hormone (ACTH) in the central nervous system, in: Neural Peptides and Neuronal Communication ( E. Costa and M. Trabucci, eds.), pp. 93–99, Raven Press, New York.

    Google Scholar 

  • Carlsson, A., 1965, Drugs which block the storage of 5-hydroxytryptamine, in: Handbuch der Exp. Pharmacol., Vol. 19 ( V. Erspamer, ed.), pp. 529–592, Springer-Verlag, Berlin.

    Google Scholar 

  • Chan-Palay, V., 1979, Combined immunocytochemistry and autoradiography after in vivo injections of monoclonal antibody to substance P and 3H-serotonin: coexistence of two putative transmitters in single raphe cells and fiber plexuses, Anat. Embryol. 156:241– 254.

    Google Scholar 

  • Chan-Palay, V., and Palay, S. L., 1977, Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry, Proc. Natl. Acad. Sci. USA 74: 4050–4054.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V., Jonsson, G., and Palay, S. L., 1978, Serotonin and substance P coexist in neurons of the rat’s central nervous system, Proc. Natl. Acad. Sci. USA 75: 1582–1586.

    Article  PubMed  CAS  Google Scholar 

  • Chavkin, C., Cox, B. M., and Goldstein, A., 1979, Stereospecific opiate binding in bovine adrenal medulla, Mol. Pharmacol. 15: 751–753.

    PubMed  CAS  Google Scholar 

  • Clement-Jones, V., Lowry, P. J., Rees, L. H., and Besser, G. M., 1980, Met-enkephalin circulates in human plasma, Nature (London) 283: 295–297.

    Article  CAS  Google Scholar 

  • Cuello, A. C., Jessell, T. M., Kanazawa, I., and Iversen, L. L., 1977, Substance P: localization in synaptic vesicles in rat central nervous system, J. Neurochem. 29: 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, A. C., Milstein, C., and Priestley, J. V., 1980, Use of monoclonal antibodies in immunocytochemistry with special reference to the central nervous system, Brain Res. Bull. 5: 575–587.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A., and Fuxe, K., 1964, Evidence for the existence of monoamine–containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurones, Acta Physiol. Scand. Suppl. 232: 1–55.

    Google Scholar 

  • Dahlstrom, A., and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems, Acta Physiol. Scand. Suppl. 247: 5–36.

    Google Scholar 

  • Dale, H. H., 1935, Pharmacology and nerve endings, Proc. R. Soc. Med. 28:319–332.

    PubMed  CAS  Google Scholar 

  • Di Giulio, A. M., Yang, H-Y.T., Lutold, B., Fratta, W., Hong, J., and Costa, E., 1978, Characterization of encephalin-like material extracted from sympathetic ganglia, Neuropharmacology 17: 989–992.

    Article  PubMed  Google Scholar 

  • Di Giulio, A. M., Groppetti, A., and Mantegazza, P., 1981, Effect of reserpine on met-enkephalin-like material concentrations in the rat adrenal gland, Br. J. Pharmacol. 72: 146–147 P.

    Google Scholar 

  • Emson, P. C., and Gilbert, R. F. T., 1980, Time course of degeneration of bulbospinal 5-HT/SP neurones after 5,7-dihydroxytryptamine, Br. J. Pharmacol. 69: 279–280 P.

    Google Scholar 

  • Fekete, M., Kadar, T., Penke, B., Kovacs, K., and Telegdy, G., 1981, Influence of cholecystokinin octapeptide sulfate ester on brain monoamine metabolism in rats, J. Neural Transm. 50: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Fex, J., and Altsghuler, R. A., 1981, Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat, Proc. Natl. Acad. Sci. USA 78: 1255–1259.

    Article  PubMed  CAS  Google Scholar 

  • Finley, J. C. W., Maderut, J. L., and Petrusz, P., 1981, The immunocytochemical localization of enkephalin in the central nervous system of the rat, J. Comp. Neurol. 198: 541–565.

    Article  PubMed  CAS  Google Scholar 

  • Fried, G., Lundberg, J. M., Hokfelt, T., Lagergrantz, H., Fahrenkrug, J., Lundgren, G., Holmstedt, B., Brodin, E., Efendig, S., and Terenius, L., 1981, Do peptides coexist with classical transmitters in the same neuronal vesicles? in: Chemical Neurotransmission, 75 Years ( L. Stjarne, P. Hedqvist, and H. Lagercrantz, eds.), pp. 105–112, Academic Press, New York.

    Google Scholar 

  • Fujita, T., and Kobayashi, S., 1979, Current views on the paraneuron-concept, Trends Neurosci. 2: 27–30.

    Article  Google Scholar 

  • Fuxe, K., Andersson, K., Logatelli, V., Agnati, L. F., Hökfelt, T., Skirboll, L., and Mutt, V., 1980, Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection, Eur. J. Pharmacol. 67: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, R. F. T., 1981, Pharmacological studies on the coexistence of peptides and amines in the spinal cord, Ph.D. thesis, Cambridge University.

    Google Scholar 

  • Gilbert, R. F. T., and Emson, P. C., 1980, Effect of reserpine on spinal cord substance P, Regal Peptides, Suppl 1: 543.

    Google Scholar 

  • Gilbert, R. F. T., Emson, P. C., Hunt, S. P., Bennett, G. W., Marsden, C. A., Sandberg, B. E. B., and Steinbusch, H. W., 1982, The effects of monoamine neurotoxins on peptides in the rat spinal cord, Neuroscience, 7: 69–87.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, R. F. T., Bennett, G. W., Marsden, C. A., and Emson, P. C., 1981, The effects of 5-hydroxytryptamine-depleting drugs on peptides in the ventral spinal cord, Eur. J. Pharmacol 76: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, E. J., and Basbaum, A. I., 1980, Leucine enkephalin: localization in and axoplasmic transport by sacral parasympathetic preganglionic neurons, Science (N.Y.) 208: 1479–1481.

    Article  CAS  Google Scholar 

  • Glazer, E. J., Steinbusch, H., Verhofstad, A., and Basbaum, A. I., 1980, Serotonergic neurons of the cat nucleus raphe dorsalis and paragigantocellularis contain enkephalin, in: Proceedings of CNRS Colloquium, The Serotonergic Neuron, Marseilles.

    Google Scholar 

  • Gu, J., De Mey, J., Moeremans, M., and Polak, J., 1981, Sequential use of the PAP and immunogold staining methods for the light-microscopical double staining of tissue antigens, Regul Peptides 1: 365–374.

    CAS  Google Scholar 

  • Hervonen, A., Pelto-Huikko, M., and Linnoila, I., 1980, Light-and electron-microscopic localization of (Leu5)-encephalin-like immunoreactivity in rat adrenal medulla, Am. J. Anat. 157: 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Hervonen, A., Linnoila, I., Pickel, V. M., Helen, P., Pelto-Huikko, M., Alho, H., and Miller, R. T., 1981, Localization of (Met5)-and (Leu5)-encephalin-like immunoreactivity in the human paravertebral sympathetic ganglia, Neuroscience 6: 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T., Johansson, O., Kellerth, J-O., Ljungdahl, Ä., Nilsson, G., Nygards, A., and Pernos, B., 1977, Immunohistochemical distribution of substance P, in: Substance P (U.S. von Euler and B. Pernow, eds.), pp. 117–154, Raven Press, New York.

    Google Scholar 

  • Hökfelt, T., Ljungdahl, Ä., Nilsson, G., Brodin, E., Pernow, B., and Goldstein, M., 1978a, Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system, Neuroscience 3: 517–538.

    Article  Google Scholar 

  • Hökfelt, T., ELDE, R., Johansson, O., Ljungdahl, Ä., Schultzberg, B., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., and Said, S., 1978b, Distribution of peptide-containing neurons, in: Psychopharmacology: A Generation of Progress (M. A. Lipton, A. Di Mascio, and K. F. Killam, eds.), pp. 39–66, Raven Press, New York.

    Google Scholar 

  • Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljungdahl, Ä., and Rehfeld, J., 1980a, Coexistence of peptides and putative transmitters in neurons, in: Neural Peptides and Neuronal Communication (E. Costa and M. Trabucchi, eds.), pp. 1–23, Raven Press, New York.

    Google Scholar 

  • Hökfelt, T., Johansson, O., Ljungdahl, Ä., Lundberg, j., and Schultzberg, m., 1980b, peptidergic neurones, Nature (London) 284: 515–521.

    Google Scholar 

  • Hökfelt, t., Skirboll, l., Rehfeld, J., Goldstein, M., and Markey, K., 1980c, Coexistence of dopamine and cholecystokinin (CCK) in a population of mesolimbic neurons: immunohistochemical studies combined with retrograde tracing, Neurosci. Lett. Suppl 5: S207.

    Google Scholar 

  • Hökfelt, T., Rehfeld, J. F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K., 1980d, Evidence for coexistence of dopamine and CCK in mesolimbic neurones, Nature (London) 285: 476–478.

    Google Scholar 

  • Hökfelt, T., Skirboll, L., Rehfeld, J. F., Goldstein, M., Markey, K., and Dann, O., 1980e, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin–like peptide: evidence from immunohistochemistry combined with retrograde tracing, Neuroscience 5: 2093–2124.

    Google Scholar 

  • Hughes, J., Kosterlitz, H. W., and Smith, T. W., 1977, The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues, Br. J. Pharmacol. 61: 639–647.

    PubMed  CAS  Google Scholar 

  • Hunt, S. P., Emson, P. C., Gilbert, R., Goldstein, M., and Kimmell, J. R., 1981, Presence of avian pancreatic polypeptide-like immunoreactivity in catecholamine-and methionine-encephalin-containing neurons within the central nervous system, Neuroscience Lett. 21: 125–130.

    Article  CAS  Google Scholar 

  • Iversen, L. L., 1978, Biochemical and pharmacological studies: the dopamine hypothesis, in: Schizophrenia. Towards a New Synthesis ( J. K. Wing, ed.), pp. 89–116, Academic Press, London.

    Google Scholar 

  • Jackson, I. M. D., 1980, TRH in the rat nervous system: identity with synthetic TRH on high-performance liquid chromatography following affinity chromatography, Brain Res. 201: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, O., and Lundberg, J. M., 1981, Ultrastructural localization of VIP-like immunoreactivity in large dense-core vesicles of “cholinergic-type” nerve terminals in cat exocrine glands, Neuroscience 6: 847–862.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, O., Hökfelt, T., Jeffcoate, S. L., White, N., and Sternberger, L. A., 1980, Ultrastructural localization of immunoreactivfc TRH, Exp. Brain Res. 38: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S. L., White, N., Steinbusch, H. W. M., Verhofstad, A. A. J., Emson, P. C., and Spindel, E., 1981, Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytrypt-amine, substance P-, and TRH-like immunoreactivity in medullary neurons projecting to the spinal cord, Neuroscience 6: 1857–1881.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, D., Abrams, G. M., Zimmerman, E. A., Carraway, R., and Leeman, S. E., 1980, Neurotensin neurons in rat hypothalamus: an immunocytochemical study, Endocrinology 107: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick, D. L., Lewis, R. V., Stein, S., and Udenfriend, S., 1980, Release of enkephalins and enkephalin–containing polypeptides from perfused beef adrenal glands, Proc. Natl. Acad. Set. USA 77: 7473–7475.

    Article  CAS  Google Scholar 

  • Kimura, A., Lewis, R. V., Stern, A. S., Rossier, J., Stein, S., and Udenfriend, S., 1980, Probable precursors of [Leu]-enkephalin and [Met]-enkephalin in adrenal medulla: peptides of 3–5 kilodaltons, Proc. Natl, Acad. Sci. USA 77: 1681–1685.

    Article  CAS  Google Scholar 

  • Krieger, D. T., Liotta, A., Suda, T., Palkoviiz, M., and Brownstein, M. J., 1977, Presence of immunoassayable β-lipotropin in bovine brain and spinal cord: lack of concordance with ACTH concentrations, Biochem. Biophys. Res. Commun. 73: 930–936.

    Article  Google Scholar 

  • Krivoy, W. A., Gouch, J. R., Stewart, J. M., and Zimmerman, E., 1980, Modulation of cat monosynaptic reflexes by substance P, Brain Res. 202: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Kumakura, K., Karou, M. F., Guidoiti, A., and Costa, E., 1980, Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells, Nature (London) 283: 489–492.

    Article  CAS  Google Scholar 

  • Larsson, L-L, 1980, Corticotropin and α-melanotropin in brain nerves: immunocytochemical evidence for axonal transport and processing, in: Neural Peptides and Neuronal Communication ( E. Costa and M. Trabucci, eds.), pp. 101–107, Raven Press, New York.

    Google Scholar 

  • Larsson, L-L, Childers, S., and Snyder, S. H., 1979, Met-and Leu-enkephalin immunoreactivity in separate neurones, Nature (London) 282: 407–409.

    Article  CAS  Google Scholar 

  • Lemaire, S., Livett, B., Tseng, R., Mercier, P., and Lemaire, I., 1981, Studies on the inhibitory action of opiate compounds in isolated bovine adrenal chromaffin cells: noninvolvement of stereospecific opiate binding sites, J. Neurochem 36: 886–892.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R. V., Stern, A. S., Rossier, J., Stein, S., and Udenfriend, S., 1979, Putative enkephalin precursors in bovine adrenal medulla, Biochem. Biophys. Res. Commun. 89:822– 829.

    Article  PubMed  Google Scholar 

  • Lewis, R. V., Stern, A. S., Kimura, S., Rossier, J., Brink, L., Gerber, L. D., Stein, S., and Udenfriend, S., 1980a, Opioid peptides and precursors in the adrenal medulla, in: Neuronal Peptides and Neuronal Communication (E. Costa and M. Trabucci, eds.), pp. 167– 179, Raven Press, New York.

    Google Scholar 

  • Lewis, R. V., Stern, A. S., Kimura, S., Rossier, J., Stein, S., and Udenfriend, S., 1980b, An about 50,000-dalton protein in adrenal medulla: a common precursor of [Met]-and [Leu]-enkephalin, Science (N.Y.) 208: 1459–1461.

    Article  CAS  Google Scholar 

  • Lewis, R. V., Stern, A. S., Kilpatrick, D. L., Gerber, L. D., Rossier, J., Stein, S., and Udenfriend, S., 1981, Marked increases in large encephalin-containing polypeptides in the rat adrenal gland following denervation, J. Neurosci. 1: 80–82.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., and Bjorklund, A., 1978, Anatomy of the dopaminergic nervous systems in the rat brain, in: Advances in Biochemical Psychopharmacology, Vol. 19 ( P. J. Roberts, G. N. Woodruff, and L. L. Iversen, eds.), pp. 1–23, Raven Press, New York.

    Google Scholar 

  • Linnoila, R. I., Diaugustine, R. P., Hervonen, A., and Miller, R. J., 1980, Distribution of [Met5]-and [Leu5]-enkephalin, vasoactive intestinal polypeptide– and substance P–like immunoreactivities in human adrenal glands, Neuroscience 5: 2247–2259.

    Article  PubMed  CAS  Google Scholar 

  • Livett, B. G., and Dean, D. M., 1980, Distribution of immunoreactive enkephalins in adrenal paraneurons: preferential localization in varicose processes and terminals, Neuropeptides 1: 3–13.

    Article  CAS  Google Scholar 

  • Livett, B. G., Dean, D. M., Whelen, L. G., Udenfriend, S., and Rossier, J., 1981, Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells, Nature (London) 289: 317–319.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Hamberger, B., Schultzberg, M., Hökfelt, T., Granberg, P. O., Efendic, S., Terenius, L., Goldstein, M., and Luft, R., 1979a, Enkephalin-and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma, Proc. Natl. Acad. Sci. USA 76: 4079–4083.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Schultzberg, M., Uvnäs-Wallenstein, K., Köhler,C., and Said, S. I., 1979b, Occurrence of vasoactive intestinal polypeptide (VlP)-like immune-reactivity in certain cholinergic neurons of the cat: evidence from combined immuno– histochemistry and acetylcholinesterase staining, Neuroscience 4: 1539–1561.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Fahrenkrug, J., Nilsson, G., and Terenius, L., 1979c, Peptides in the cat carotid body (glomus caroticum): VIP-, encephalin-, and substance P-like immunoreactivity, Acta Physiol. Scand. 107: 279–281.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Anggard, A., Uvnas-Wallenstein, K., Brimijoin, S., Brodin, E., and Fahrenkrug, J., 1980a, Peripheral peptide neurons: distribution, axonal transport, and some aspects on possible function, in: Neural Peptides and Neuronal Communication (E. Costa and M. Trabucci, eds.), pp. 25–36, Raven Press, New York.

    Google Scholar 

  • Lundberg, J. M., Anggard, A., Fahrenkrug, J., Hökfelt, T., and Mutt, V., 1980b, Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion, Proc. Natl. Acad. Sci. USA 77:1651–1655.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Hökfelt, T., Anggard, A., Kimmel, J., Goldstein, M., and Markey, K., 1980c, Coexistence of an avian pancreatic polypeptide (APP)–immunoreactive substance and catecholamines in some peripheral and central neurones, Acta. Physiol. Scand. 110: 107–109.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Änggärd, A., Hökfelt, T., and Kimmel, J., 1980d, Avian pancreatic polypeptide (APP) inhibits atropine–resistant vasodilatation in cat submandibular salivary gland and nasal mucosa: possible interaction with VIP, Acta Physiol Scand. 110: 199–201.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Änggärd, A., EMSON, P., Fahrenkrug, J., and Hökfelt, T., 1981a, VIPergic and cholinergic mechanisms in the cat nasal mucosa: studies on choline acetyltransferase and release of VIP, Proc. Natl. Acad. Sci. USA 78: 5255–5259.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Änggärd, A., and Fahrenkrug, J., 1981b, Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. I. VIP release, Acta Physiol. Scand. 113: 317–328.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Änggärd, A., and Fahrenkrug, J., 1981c, Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. II. Effects of cholinergic antagonists and VIP antiserum, Acta Physiol Scand. 113: 329–336.

    Article  CAS  Google Scholar 

  • Lundberg, J. M., Änggärd, A., and Fahrenkrug, J., 1982, Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. III. Effects of local infusions, Acta Physiol. Scand. 114: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J. M., Fried, G., Fahrenkrug, J., Holmstedt, B., Hökfelt, T., Lagergrantz, H., Lundgren, G., and Änggärd, A., 198d, Subcellular fractionation of cat subman¬dibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP), Neuroscience 6: 1001–1010.

    Article  CAS  Google Scholar 

  • Mains, R. E., Eipper, B. A., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Natl. Acad. Sci. USA 74: 3014–3018.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., and Voigt, K. H., 1981, Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis, Nature (London) 289: 502–504.

    Article  CAS  Google Scholar 

  • Mccall, R. B., and Aghajanian, G. K., 1979, Serotonergic facilitation of facial motoneuron excitation, Brain Res. 169: 11–27.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, K., Minamino, N., Kanagawa, K., and Matsuo, H., 1980a, A new endogenous opioid peptide from bovine adrenal medulla: isolation and amino acid sequence of a dodecapeptide (BAM-12P), Biochem. Biophys. Res. Commun. 95: 1482–1488.

    Article  CAS  Google Scholar 

  • Mizuno, K., Minamino, N., Kanagawa, K., and Matsuo, H., 1980b, A new family of endogenous “big” met-enkephalins from bovine adrenal medulla: purification and structure of docosa- (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity, Biochem. Biophys. Res. Commun. 97: 1283–1290.

    Article  CAS  Google Scholar 

  • Moss, M. S., Glazer, E. J., and Basbaum, A. I., 1980, Enkephalin-immunoreactive perikarya in the cat raphe dorsalis, Neurosci. Lett. 21: 33–38.

    Article  Google Scholar 

  • Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S., 1979, Nucleotide sequence of cloned CDNA for bovine corticotropin-β-lipotropin precursor, Nature (London) 278: 423–428.

    Article  CAS  Google Scholar 

  • Nigoll, R. A., 1977, Excitatory action of TRH on spinal motoneurones, Nature (London) 265: 242–243.

    Article  Google Scholar 

  • Nigoll, R. A., 1978, The action of thyrotropin-releasing hormone, substance P, and related peptides on frog spinal motoneurons, J. Pharmacol. Exp. Ther. 207: 817–824.

    Google Scholar 

  • Nilaver, G., Zimmerman, E. A., Defendini, R., Liotta, A. S., Krieger, D. T., and Brownstein, M. J., 1979, Adrenocorticotropin and β -lipotropin in the hypothalamus, J. Cell Biol. 81: 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., and Konishi, S., 1976, Substance P a sensory transmitter, Cold Spring Harbor Symp. Quant. Biol. 40: 135–143.

    PubMed  CAS  Google Scholar 

  • Pearse, A. G. E., 1968, Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series), and their relevance to thyroid and ultimobranchial C cells and calcitonin, Proc. R. Soc. London, Ser. B 170: 71–80.

    Article  CAS  Google Scholar 

  • Pearse, A. G. E., 1979, The Endocrine Division of the Nervous System: A Concept and Its Verification (I. Maclntyre and M. Szelke, eds.), pp. 4–18, Elsevier/North–Holland, Amsterdam.

    Google Scholar 

  • Pelletier, G., and Leclerg, R., 1979, Immunohistochemical localization of adrenocorticotropin in the rat brain, Endocrinology 104: 1426–1433.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V. M., Reis, D. J., and Leeman, S. E., 1977, Ultrastructural localization of substance P in neurons of rat spinal cord, Brain Res. 122: 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Ratter, S. J., McLoughlin, Gillies, G., Clement-Jones, V., Hope, J., and Rees, L. H., 1980, Pars intermedia peptides: studies in adult humans, in: Peptides in the pars intermedia, Ciba Foundation Symposium 81, pp. 224–243, Pitman Medical.

    Google Scholar 

  • Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guillemin, R., and Bloom, F., 1979, Hypothalamic enkephalin neurones may regulate the neurohypophysis, Nature (London) 277: 653–655.

    Article  CAS  Google Scholar 

  • Rossier, J., Trifaro, J. M., Lewis, R. V., Lee, R. W. H., Stern, A., Kimura, S., Stein, S., and Udenfriend, S., 1980a, Studies with [35S]-methionine indicate that the 22,000-dalton [Met]-nkephalin-containing protein in chromaffin cells is a precursor of [Met]-enke-phalin, Proc. Natl. Acad. Sci. USA 77: 6889–6891.

    Article  CAS  Google Scholar 

  • Rossier, J., Audigier, Y., Ling, N., Gros, J., and Udenfriend, S., 1980b, Met-enkephalin-Arg6-Phe7 present in high amounts in brain of rat, cattle, and man is an opioid agonist, Nature (London) 288: 88–90.

    Article  CAS  Google Scholar 

  • Rossier, J., Dean, D. M., Livett, B. G., and Udenfriend, S., 1981, Enkephalin congeners and precursors are synthesized and released by primary cultures of adrenal chromaffin cells, Proc. Natl Acad. Set. USA 28: 781–789.

    CAS  Google Scholar 

  • Sar, M., Stumpf, W. E., Miller, R. J., Chang, K-J., and Cuatrecasas, P., 1978, Immuno-histochemical localization of enkephalin in rat brain and spinal cord, J. Comp. Neurol. 182: 17–38.

    Article  PubMed  CAS  Google Scholar 

  • Schultzberg, M., Hökfelt, T., Lundberg, J. M., Terenius, L., Elfvin, L. G., and Elde, R., 1978a, Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla, and in adrenal medullary ganglion cells, Acta Physiol. Scand. 103: 475–477.

    Google Scholar 

  • Schultzberg, M., Lundberg, J. M., Hökfelt, T., Terenius, L., Brandt, J., Elde, R. P., and Goldstein, M., 1978b, Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla, Neuroscience 3: 1169–1186.

    Article  CAS  Google Scholar 

  • Schultzberg, M., Hökfelt, T., Terenius, L., Elfvin, L. G., Lundberg, J. M., Brandt, J., Elde, R., and Goldstein, M., 1979, Enkephalin immunoreactive nerve terminals and cell bodies in sympathetic ganglia of the guinea pig and rat, Neuroscience 4: 249–270.

    Article  PubMed  CAS  Google Scholar 

  • Schultzberg, M., Hökfelt, T., Nilsson, G., Terenius, L., Rehfeld, J. F., Brown, M., Elde, R., Goldstein, M., and Said, S., 1980, Distribution of peptide-and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea pig: immunohisto-chemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin, and dopamine-β-hydroxylase, Neuroscience 5: 689–744.

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki, T., Ling, N., Guillemin, R., Silver, M., and Bloom, F., 1981, The regional distribution of γ3-melanotropin-like peptides in bovine brain is correlated with adreno-corticotrophic hormone but not with β-endorphin, Regul. Peptides 2: 43–52.

    Article  CAS  Google Scholar 

  • Shimitzu, T., and Taira, N., 1979, Assessment of the effects of vasoactive intestinal polypeptide (VIP) on blood flow through and salivation of the dog salivary gland in comparison with those of secretion, glucagon, and acetylcholine, Br. J. Pharmacol. 65:683–687.

    Google Scholar 

  • Simantov, R., and Snyder, S. H., 1977, Opiate receptor binding in the pituitary gland, Brain Res. 124: 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Singer, E., Sperk, G., Placheta, P., and Leeman, S. E., 1979, Reduction of substance P levels in the ventral cervical spinal cord of the rat after intracisternal 5,7-dihydroxytryp-tamine injection, Brain Res. 174: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. W., 1979, Immunoreactive β–endorphin and ACTH in the same neurons of the hypothalamic arcuate nucleus in the rat, Am. J. Anat. 154: 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, H. W., Zimmerman, E. A., Sawyer, W. H., and Robinson, A. G., 1976, The hypothalamo-neurohypophyseal system of the rat: localization and quantitation of neurophysin by light-microscopic immunocytochemistry in normal rat and in Brattleboro rats deficient in vasopressin and a neurophysin, Endocrinology 98: 1178–1188.

    Article  Google Scholar 

  • Spindel, E., and Wurtman, R. J., 1980, TRH immunoreactivity in rat brain regions, spinal cord, and pancreas: validation by high-pressure liquid chromatography and thin-layer chromatography, Brain Res. 201: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Stern, A. S., Lewis, R. V., Kimura, S., Rossier, J., Gerber, L. D., Brink, L., Stein, S., and Udenfriend, S., 1979, Isolation of the opioid heptapeptide Met-enkephalin-[Arg6,Phe7] from bovine adrenal medullary granules and striatum, Proc. Natl. Acad. Sci. USA 76:6680–6683.

    Article  PubMed  CAS  Google Scholar 

  • Stern, A. S., Jones, B. N., Shively, J. E., Stein, S., and Udenfriend, S., 1981, Two adrenal opioid polypeptides: proposed intermediates in the processing of pro-enkephalin, Proc. Natl. Acad. Sci. USA 78: 1962–1966.

    Article  PubMed  CAS  Google Scholar 

  • Tager, H., Hohenböken, M., Markese, J., and Dinerstein, R. V. J., 1980, Identification and localization of glucagon–related peptides in rat brain, Proc. Natl. Acad. Sci. USA 77: 6229–6233.

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto, K., and Mutt, V., 1980a, Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides, Nature (London) 285: 417–418.

    Article  CAS  Google Scholar 

  • Tatemoto, K., and Mutt, V., 1980b, Isolation and characterization of two novel gastrointestinal candidate hormones, Regul. Peptides Suppl. 1: S112.

    Article  Google Scholar 

  • Toubeau, G., Desclin, J., Parmentier, M., and Pasteels, J. L., 1979, Compared localizations of prolactin-like and adrenocorticotropin immunoreactivities within the brain of the rat, Neuroendocrinology 29: 374–384.

    Article  PubMed  CAS  Google Scholar 

  • Tramu, G., Pillez, A., and Leonardelli, J., 1978, An effective method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry, J. Histochem. Cytochem. 26: 322–324.

    Article  PubMed  CAS  Google Scholar 

  • Uddman, R., Fahrenkrug, J., Malm, L., Alumets, J., Häkanson, R., and Sundler, F., 1980, Neuronal VIP in salivary glands: distribution and release, Acta Physiol. Scand. 110:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Vanderhaegen, J. J., 1981, Gastrins and cholecystokinins in the central nervous system and hypophysis, in: Hormones and Cell Regulation, Vol. 5 ( J. E. Dumant and J. Nanez, eds.), INSERM, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Vanderhaegen, J. J., Lotstra, F., De Mey, J., and Gilles, C., 1980, Immunohistochemical localization of cholecystokinin-and gastrin-like peptides in the brain and hypophysis of the rat, Proc. Natl. Acad. Sci. USA 77: 1190–1194.

    Article  Google Scholar 

  • Vandermaelen, C. P., and Aghajanian, G. K., 1980, Intracellular studies showing modulation of facial motoneurone excitability by serotonin, Nature (London) 287: 346–347.

    Article  CAS  Google Scholar 

  • Vandesande, F., and Dierigkx, K., 1975, Identification of vasopressin–producing and oxytocin–producing neurons in the hypothalamic magnocellular neurosecretory system of the rat, Cell Tissue Res. 164: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Vandesande, F., Dierickx, K., and De Mey, J., 1975, Identification of the vasopressin-neurophysin II-and the oxytocin-neurophysin I-producing neurones in the bovine hypothalamus, Cell Tissue Res. 156: 189–200.

    PubMed  CAS  Google Scholar 

  • Vandesande, F., Dierigkx, K., and De Mey, J., 1977, The origin of the vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis, Cell Tissue Res. 180: 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Viveros, O. H., Arqueros, L., Connett, R. J., and Kirshner, N., 1969, Mechanism of secretion from the adrenal medulla. IV. The fate of the storage vesicles following insulin and reserpine administration, Mol. Pharmacol. 5: 69–82.

    PubMed  CAS  Google Scholar 

  • Viveros, O. H., Diliberto, E. J., Hazum, E., and Chang, K. J., 1979, Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines, Mol. Pharmacol. 16: 1101–1108.

    PubMed  CAS  Google Scholar 

  • Viveros, O. H., Diliberto, E. J., Hazum, E., and Chang, K-J., 1980, Enkephalins as possible adrenomedullary hormones: storage, secretion, and regulation of release, in: Neural Peptides and Neuronal Communciation ( E. Costa and M. Trabucci, eds.), pp. 191–204, Raven Press, New York.

    Google Scholar 

  • Watson, S. J., and Akil, H., 1980, α-MSH in rat brain: occurrence within and outside β-endorphin neurons, Brain Res. 182: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Barghas, J. D., and Li, C. H., 1977, β-lipotropin: localization of cells and axons in rat brain by immunocytochemistry, Proc. Natl. Acad. Sci. USA 74: 5155–5158.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. J., Righard, C. W., and BARGHAS, J. D., 1978a, Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons, Science 200: 1180–1181.

    Article  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Richard, C. W., and Barchas, J. D., 1978b, Evidence for two separate opiate peptide systems, Nature (London) 275: 226–228.

    Article  CAS  Google Scholar 

  • Watson, S. J., Akil, H., and Walker, J. M., 1980, Anatomical and biochemical studies of the opioid peptides and related substances in the brain, Peptides 1, Suppl. 1: 11–20.

    Article  CAS  Google Scholar 

  • Watson, S. J., Akil, H., Ghazarossian, V. E., and Goldstein, A., 1981, Dynorphin immunocytochemical localization in brain and peripheral nervous system: preliminary studies, Proc. Natl. Acad. Sci. USA 78: 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  • Wharton, J., Polak, J. M., Pearse, A. G. E., Mcgregor, G. P., Bryant, M. G., Bloom, S. R., Emson, P. C., Bisgard, G. E., and Will, J. A., 1980, Enkephalin-,VIP-, and substance P-like immunoreactivity in the carotid body, Nature (London) 284: 269–271.

    Article  CAS  Google Scholar 

  • White, S. R., and Neuman, R. S., 1980, Facilitation of spinal motoneuron excitatbility by 5-hydroxytryptamine and noradrenaline, Brain Res. 188: 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. P., Chang, K. J., and Viveros, O. H., 1980a, Synthesis of enkephalins by adrenal medullary chromaffin cells: reserpine increases incorporation of radiolabeled amino acids, Proc. Natl. Acad. Sci. USA 77: 4364–4368.

    Article  CAS  Google Scholar 

  • Wilson, S. P., Klein, R. L., Chang, K-J., Gasparis, M. S., Viveros, O. H., and YANG, W. H., 19806, Are opioid peptides co–transmitters in noradrenergic vesicles of sympathetic nerves? Nature (London) 288: 707–709.

    Article  CAS  Google Scholar 

  • Wilson, S. P., Abou-Donia, M. M., Chang, K-J, and Viveros, O. H., 1981, Reserpine increases opiate–like peptide content and tyrosine hydroxylase activity in adrenal medullary chromaffin cells in culture, Neuroscience 6: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffin granules, Neuroscience 5: 1803–1823.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H-Y. T., Di Giulio, A. M., Fratta, W., Hong, J. S., Majane, E. A., and Costa, E., 1979, Enkephalin in bovine adrenal gland: multiple molecular forms of [Met5]-enkephalin immunoreactive peptides, Neuropharmacology 19: 209–215.

    Article  Google Scholar 

  • Yang, H-Y. T., Hexum, T. D., Majane, E., and Costa, E., 1980, Opiate peptides in bovine adrenal gland, in: Neural Peptides and Neuronal Communication ( E. Costa and M. Trabucci, eds.), pp. 181–190, Raven Press, New York.

    Google Scholar 

  • Zakarian, S., and Smyth, D., 1979, Distribution of active and inacctive forms of endorphins in rat pituitary and brain, Proc. Natl. Acad. Sci. USA 76: 5972–5976.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, E. A., Krupp, L., Hoffman, D. L., Matthew, E., and Nilaver, G., 1980, Exploration of peptidergic pathways in brain by immunocytochemistry: a ten year perspective, Peptides 1, Suppl. 1: 3–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Gilbert, R.F.T., Emson, P.C. (1983). Neuronal Coexistence of Peptides with Other Putative Transmitters. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3515-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3515-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3517-7

  • Online ISBN: 978-1-4613-3515-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics