Skip to main content

Electrical Properties of Cells: Principles, Some Recent Results, and Some Unresolved Problems

  • Chapter
The Biophysical Approach to Excitable Systems

Abstract

My own interest in the electrical properties of biological systems was largely motivated by Cole. As a young physics student, financial problems forced me to interrupt my studies until I found employment as an electronics technician at the present Max Planck Institute for Biophysics. I must confess that I was not particularly enthusiastic at first. How could it be possible to apply physics to such complex systems as exist in biology? At that time Rajewsky gave me some twenty reprints by Cole and Fricke. Here I found that the choice of appropriate models and rigorous calculations, coupled with experimental experience, patience, and ingenuity, could indeed penetrate into problem areas previously considered hopeless and derive significant results. I met Cole for the first time ten years later and since then have benefited from his ideas and encouragement, as did so many of his students and collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adey, W. R., and Bawin, S. M. (1977). Brain interactions with weak electric and magnetic fields, Neurosci. Res. Bull. 15, 7.

    Google Scholar 

  • Böttcher, C. J. F. (1952). Theory of Electric Polarization (Elsevier, Houston).

    Google Scholar 

  • Carstensen, E. L., Cox, H. A., Jr., Mercer, W. B., and Natale, L. A. (1965). Passive electrical properties of micro-organisms. I. Conductivity of Escherichia coli and Micrococcus lysodeikticus, Biophys. J. 5, 289.

    Article  Google Scholar 

  • Carstensen, E. L. (1967). Passive electrical properties of micro-organisms. II. Resistance of the bacterial membrane, Biophys. J. 7, 493.

    Article  ADS  Google Scholar 

  • Carstensen, E. L., and Marquis, R. E. (1968). Passive electrical properties of microorganisms. III. Conductivity of isolated bacterial cell walls, Biophys. J. 8, 536.

    Article  ADS  Google Scholar 

  • Cole, K. S. (1972). Membranes, Ions and Impulses (University of California Press, Berkeley).

    Google Scholar 

  • DeFelice, L. J., Adelman, W. J., Jr., Clapham, D. E., and Mauro, A. (1980). Second order admittance in squid axon, Abstract, presented at the 1980 Joint ASBC/Biophys. Soc. Meeting, New Orleans.

    Google Scholar 

  • Drost-Hansen, W. (1977). Water at biological interfaces: Structural and functional aspects, Phys. Chem. Liq. 7, 243–345.

    Article  Google Scholar 

  • Einolf, C. W., Jr., and Carstensen, E. L. (1969). Passive electrical properties of microorganisms. IV. Studies of the protoplasts of Micrococcus lysodeikticus, Biophys. J. 9, 634.

    Article  Google Scholar 

  • Einolf, C. W., Jr., and Carstensen, E. L. (1973). Passive electrical properties of microorganisms. V. Low frequency dielectric dispersion of bacteria, Biophys. J. 13, 8.

    Article  Google Scholar 

  • Falk, G., and Fatt, P. (1964). Linear electrical properties of striated muscle fibers observed with intracellular electrodes, Proc. R. Soc. London Ser. B 160, 69–123.

    Article  ADS  Google Scholar 

  • Fatt, P. (1964). An analysis of the transverse electrical impedance of striated muscle, Proc. R. Soc. London Ser. B 159, 606–651.

    Article  ADS  Google Scholar 

  • Fishman, H. M., Poussart, D., Moore, L. E., and Siebenga, E. (1977). K-conduction description for the low-frequency impedance and admittance of squid axon, J. Membr. Biol. 32, 255–290.

    Article  Google Scholar 

  • Foster, K. R., Bidinger, J. M., and Carpenter, D. O. (1976). The electrical resistivity of cytoplasm, Biophys. J. 16, 991.

    Article  ADS  Google Scholar 

  • Foster, K. R., Schepps, J. L., and Schwan, H. P. (1980). Microwave dielectric relaxation in muscle: A second Look, Biophys. J. 29, 271–282.

    Article  Google Scholar 

  • Freygang, W. H., Jr., Rapoport, S. I., and Peachey, L. D. (1967). Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure, Gen. Physiol. 50, 2437–2458.

    Article  Google Scholar 

  • Grant, E. H. (1965). “The structure of water, neighboring proteins, peptides and amino acids as deduced from dielectric measurements”, Ann. N.Y. Acad. Sci. 125, 418–427.

    Article  ADS  Google Scholar 

  • Hoeber, R. (1910). Eine Methode die elektrische Leitfähigkeit im Innern von Zellen zu messen, Arch. Ges. Physiol. 133, 237–259.

    Article  Google Scholar 

  • Hoeber, R. (1912). Ein zweites Verfahren die Leitfähigkeit im Innern von Zellen zu messen, Arch. ges. Physiol. 148, 189–221.

    Article  Google Scholar 

  • Hoven, M. M., Bäk, A. F., and Carpenter, D. O. (1972). Low internal conductivity of Aplysia neuron somata, Science 176, 1329–1330.

    Article  ADS  Google Scholar 

  • Jenin, P. C., and Schwan, H. P., (1980). Some observations on the dielectric properties of hemoglobin’s suspending medium inside human erythrocytes, Biophys. J. 30, 285–293.

    Article  ADS  Google Scholar 

  • Ling, G. N., Miller, C., and Ochsenfeld, M. M. (1973). The physical state of solutes and water in living cells according to the association induction hypothesis, Ann. N.Y. Acad. Sci. 204, 6.

    Article  ADS  Google Scholar 

  • Masszi, G. (1972). Dielectric relaxation and water structure in gelatin solutions, Acta Biochim. Biophys. Acad. Sci. Hung. 7, 349–357.

    Google Scholar 

  • Masszi, G., Szuarto, A., and Grof, P. (1976). Investigations on the ion- and water-binding of muscle by microwave measurements, Acta Biochim. Biophys. Acad. Sci. Hung. 11, 129–131.

    Google Scholar 

  • Pauly, H., and Schwan, H. P. (1966). Dielectric properties and ion mobility in erythrocytes, Biophys. J. 6, 621–639.

    Article  ADS  Google Scholar 

  • Pennock, B., and Schwan, H. P. (1969). Further observations on the electrical properties of hemoglobin bound water, J. Phys. Chem. 73, 2600.

    Article  Google Scholar 

  • Poussart, D., Moore, L. E., and Fishman, H. M. (1977). Ion movement and kinetics in squid axon. I. Complex admittance, Ann. N.Y. Acad. Sci. 303, 355–379.

    Google Scholar 

  • Redwood, W. R., Takashima, S., Schwan, H. P., and Thomson, T. E. (1972). Dielectric studies on homogeneous phosphatidylcholine vesicles, Biochim. Biophys. Acat 255, 557–566.

    Article  Google Scholar 

  • Schifferdecker, E., and Froemter, E. (1978). The AC impedance of Necturus gall-bladder epithelium, Pflügers Arch., Eur. J. Physiol. 377, 125–133.

    Article  Google Scholar 

  • Schwan, H. P., and Li, K. (1953). Capacity and conductivity of body tissues at ultra-high frequencies,Proc. I.R.E. 41, 1735.

    Article  Google Scholar 

  • Schwan, H. P. (1954). Electrical properties of muscle tissue at low frequencies, Z. Natur- forsch. 9b, 245.

    Google Scholar 

  • Schwan, H. P., Bothwell, T. P., and Wiercinski, F. J. (1954). Electrical properties of beef erythrocyte suspensions at low frequencies, Fed. Proc. Am. Soc. Exp. Biol. 13, 15.

    Google Scholar 

  • Schwan, H. P. (1957). Electrical properties of tissue and cell suspensions, in Advances in Biological and Medical Physics, Vol. V, J. H. Lawrence and C. A. Tobias, Eds. (Academic, New York), p. 147.

    Google Scholar 

  • Schwan, H. P., and Carstensen, E. L. (1957). Dielectric properties of membrane of lysed erythrocytes, Science 125, 985.

    Article  ADS  Google Scholar 

  • Schwan, H. P., and Kay, C. F. (1957). Capacitive properties of living tissues, Circ. Res. 5, 439.

    Google Scholar 

  • Schwan, H. P., and Maczuk, J. (1959). Electrical relaxation phenomena of biological cells and colloidal particles at low frequencies, in Proceedings of the First National Biophysics Conference (Yale University Press, New Haven, Connecticut), p. 348.

    Google Scholar 

  • Schwan, H. P., and Morowitz, H. J. (1962). Electrical properties of the membranes of the pleuropneumonia-like organism A5969, Biophys. J. 2, 395.

    Article  Google Scholar 

  • Schwan, H. P., Schwarz, G., Maczuk, J., and Pauly, H. (1962). On the low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66, 2626.

    Article  Google Scholar 

  • Schwan, H. P. (1963). Determination of biological impedances, in Physical Techniques in Biological Research, Vol. 6, W. L. Nastuk, Ed. (Academic, New York), p. 323.

    Google Scholar 

  • Schwan, H. P. (1965). Electrical properties of bound water, Ann. N.Y. Acad. Sci. 125, 344–354.

    Article  ADS  Google Scholar 

  • Schwan, H. P., Takashima, S., Miyamoto, V. K., and Stoeckenius, W. (1970). Electrical properties of phosphilipid vesicles, Biophys. J. 10, 1102–1119.

    Article  Google Scholar 

  • Schwan, H. P., Sheppard, R. J., and Grant, E. H. (1976). Complex permittivity of water at 25°C, J. Chem. Phys. 64, 2257–2258.

    Article  ADS  Google Scholar 

  • Schwan, H. P., and Foster, K. R. (1977). Microwave dielectric properties of tissue: Some comments on the rotational mobility of tissue water, Biophys. J. 17, 193–197.

    Article  ADS  Google Scholar 

  • Schwarz, G. (1962). A theory of low frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem. 66, 2636–2642.

    Article  Google Scholar 

  • Takashima, S., and Schwan, H. P. (1974). Passive electrical properties of squid axon membrane, J. Membr. Biol. 17, 51–68.

    Article  Google Scholar 

  • Takashima, S., (1976). Membrane capacity of squid axon during hyper- and depolarization, J. Membr. Biol 27, 21–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Schwan, H.P. (1981). Electrical Properties of Cells: Principles, Some Recent Results, and Some Unresolved Problems. In: Adelman, W.J., Goldman, D.E. (eds) The Biophysical Approach to Excitable Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3297-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3297-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3299-2

  • Online ISBN: 978-1-4613-3297-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics