Skip to main content

Kapitza Resistance Studies Using Phonon Pulse Reflection

  • Chapter
Phonon Scattering in Condensed Matter

Abstract

The transport of heat across interfaces between solids and liquid helium is generally described by a thermal boundary resistance which is named after Kapitza.1 Two microscopic transport mechanisms have been distinguished. One is the transmission of phonons under the conservation of energy as first proposed by Khalatnikov2 and later refined by many authors.3 This mechanism is very ineffective because of the large acoustic mismatch between helium and all solids. A far more effective second transport mechanism was invoked to account for the many experimental facts which were mostly obtained by phonon pulse experiments.4–8 This mechanism was found on all surfaces studied, if the phonon frequencies were above ~50 GHz or, correspondingly, T>1K. Therefore, it was considered to be an intrinsic effect and some models were put forward which were all based on the assumption of an ideally plane surface of the solid.9,10 None of these models was able to account at least for the magnitude of the heat transport without lumping the problem into adjustable parameters. Thus, the second heat transfer mechanism was called “anomalous”, and was considered to be - if not miraculous - a tantalizing problem at least.11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Kapitza, Zh. Eksp. Teor. Fiz. 11:1 (1941).

    Google Scholar 

  2. I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 22:687 (1952).

    Google Scholar 

  3. L. J. Challis, K. Dransfeld,and J. Wilks, Proc.Roy. Soc. (London) A 260:31 (1961); I. N. Adamenko and I. M. Fuks, Zh. Eksp. Teor. Fiz. 59:2071 (1970); R. E. Peterson and A. C. Anderson, Phys. Lett. 40A:317 (1972); H. Haug and K. Weiss, Phys. Lett. 40A:19 (1972); J. L. Opsal and G. L. Pollack, Phys. Rev. A 9: 2227 (1974).

    Article  ADS  Google Scholar 

  4. C.-J. Guo and H. J. Maris, Phys. Rev. Lett. 29: 855 (1972).

    Article  ADS  Google Scholar 

  5. H. Kinder and W. Dietsche, Phys. Rev. Letters 33:578 (1974); W. Dietsche and H. Kinder, J. Low Temp. Phys. 23:27 (1976); J. Weber, W. Dietsche,and H. Kinder, Phys. Lett. 64A: 202 (1977)

    Article  ADS  Google Scholar 

  6. A. R. Long, R. A. Sherlock,and A. F. G. Wyatt, J. Low Temp. Phys. 15: 523 (1974).

    Article  ADS  Google Scholar 

  7. R. A. Sherlock, N. G. Mills,and A. F. G. Wyatt, J. Phys. C 8:300 (1975); A. F. G. Wyatt, G. J. Page,and R. A. Sherlock, Phys. Rev. Lett. 36: 1184 (1976).

    Google Scholar 

  8. T. J. B. Swanenburg and J. Wolter, Phys. Rev. Lett. 31: 693 (1973)

    Article  ADS  Google Scholar 

  9. A. R. Long, J. Low Temp. Phys. 17:7 (1974); T. Nakayama, J. Phys. C 10:3273 (1977); W. M. Saslow and M. E. Lumpkin, Solid State Comm. 29: 395 (1979).

    Google Scholar 

  10. H. J. Maris, Phys. Rev. B 19: 1443 (1979).

    Google Scholar 

  11. A. C. Anderson in: “Phonon Scattering in Solids”, L. J. Challis, V. W. Rampton, and A. F. G. Wyatt eds., Plenum, New York (1976), p. 1.

    Google Scholar 

  12. J. Weber, W. Sandmann, W. Dietsche,and H. Kinder, Phys. Rev. Lett. 40: 1469 (1978).

    Article  ADS  Google Scholar 

  13. For a review of the method, see H. Kinder in: “Proc. of the 14th Int. Conf. on Low Temp. Phys. LT14”, M. Krusius and M. Vuorio eds., North Holland/Elsevier, Amsterdam (1975) Vol. 5, p. 287.

    Google Scholar 

  14. J. Weber, W. Dietsche,and H. Kinder, Verhandl. DPG(VI) 14:409 (1979), and to be publ.

    Google Scholar 

  15. A. C. Anderson and W. L. Johnson, J. Low Temp. Phys. 7:1 (1972); E. S. Sabisky and C. H. Anderson, Solid State Comm. 17: 1095 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Schubert, P. Leiderer, and H. Kinder, to be publ.

    Google Scholar 

  17. S. Hunklinger and W. Arnold in. “Physical Acoustics” R. N. Thurston and W. P. Mason eds., Academic, New York (1976), Vol. 12, p. 155.

    Google Scholar 

  18. A. F. G. Wyatt and G. N. Crisp, Journal de Physique 39: Colloque C-6, 244 (1978).

    Google Scholar 

  19. W. Dietsche and H. Kinder, this issue, and to be publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Kinder, H., Weber, J., Dietsche, W. (1980). Kapitza Resistance Studies Using Phonon Pulse Reflection. In: Maris, H.J. (eds) Phonon Scattering in Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3063-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3063-9_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3065-3

  • Online ISBN: 978-1-4613-3063-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics