Skip to main content

Homocysteine Biosynthesis in Plants

  • Chapter
Natural Sulfur Compounds

Abstract

Synthesis by plants of homocysteine, the immediate precursor of methionine, is a key reaction in biology (Allaway, 1970). This is so because non-ruminant animals require a dietary source of homocysteine, which is normally provided in the form of methionine. Animals metabolize these sulfur amino acids eventually to inorganic sulfate. Plants complete the cycle of sulfur by reductive assimilation of inorganic sulfate to methionine (and cysteine) (Siegel, 1975), and are thus the ultimate source of methionine in most animal diets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnes, H., 1976, Homoserine kinase from barley seedlings, Plant Sei. Lett., 7: 187.

    Article  CAS  Google Scholar 

  • Aarnes, H., 1978, Regulation of threonine biosynthesis in barley seedlings (Hordeum vulgare, L.), Planta, 140: 185.

    Article  CAS  Google Scholar 

  • Allaway, W. H., 1970, The scope of the symposium: Outline of current problems related to sulfur in nutrition, in: Symposium: Sulfur in Nutrition, O. H. Muth, and J. E. Oldfield, eds., Avi Publishing Co., Westport, Conn.

    Google Scholar 

  • Allaway, W. H., and Thompson, J. F., 1966, Sulfur in the nutrition of plants and animals, Soil Sei, 101: 240.

    CAS  Google Scholar 

  • Bryan, J. K., in press, The synthesis of the aspartate family and the branched chain amino acids, in: “Biochemistry of Plants: A Comprehensive Treatise,” Vol. 5, P. K. Stumpf, and E. E. Conn, eds., Academic Press, New York.

    Google Scholar 

  • Datko, A. H., Giovanelli, J., and Mudd, S. H., 1974, Homocysteine biosynthesis in green plants. 0-Phosphohomoserine as the physiological substrate for cystathionine γ–synthase J. Biol. Chem., 249: 1139.

    PubMed  CAS  Google Scholar 

  • Datko, A. H., Mudd, S. H., and Giovanelli, J., 1974a, A sensitive and specific assay for cystathionine: cystathionine content of several plant tissues, Anal. Biochem., 62: 531.

    Article  PubMed  CAS  Google Scholar 

  • Datko, A. H., Mudd, S. H., and Giovanelli, J., 1977, Homocysteine biosynthesis in green plants. Studies of the homocysteine-forming sulfhydrylase, J. Biol. Chem., 252: 3436.

    CAS  Google Scholar 

  • Davies, D. D., 1968, The metabolism of amino acids in plants, in: “Recent Aspects of Nitrogen Metabolism in Plants,” E. J. Hewitt, and C. V. Cutting, eds., Academic Press, New York.

    Google Scholar 

  • Delavier-Klutchko, C., and Flavin, M., 1965, Enzymatic synthesis and cleavage of cystathionine in fungi and bacteria, J. Biol. Chem., 240: 2537.

    PubMed  CAS  Google Scholar 

  • Dougall, D. K., 1965, The biosynthesis of protein amino acids in plant tissue culture I. Isotope competition experiments using glucose-U-C and the protein amino acids, Plant Physiol, 40: 891.

    Article  PubMed  CAS  Google Scholar 

  • Dougall, D. K., and Fulton, M. M., 1967, Biosynthesis of protein amino acids in plant tissue culture IV. Isotope competition experiments using glucose-U-C and potential intermediates, Plant Physiol, 42: 941.

    Article  PubMed  CAS  Google Scholar 

  • Flavin, M., 1975, Methionine biosynthesis, in: “Metabolic Pathways,” Vol. 7, D. M. Greenberg, ed., Academic Press, New York.

    Google Scholar 

  • Flavin, M., and Slaughter, C., 1967, Enzymatic synthesis of homocysteine or methionine directly from O-succinylhomoserine, Biochim. Biophys. Acta, 132: 400.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1966, Enzymatic synthesis of cystathionine by extracts of spinach, requiring O-acetylhomo-serine or O-succinylhomoserine, Biochem. Biophys. Res. Commun., 25: 366.

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1967, Synthesis of homocysteine and cysteine by enzyme extracts of spinach, Biochem. Biophys. Res. Commun., 27: 150.

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1971, Transsulfuration in higher plants. Partial purification and properties of B-cystathionase of spinach, Biochim. Biophys. Acta, 227: 654.

    CAS  Google Scholar 

  • Giovanelli, J., Owens, L. D., and Mudd, S. H., 1971, Mechanism of inhibition of spinach B-cystathionase by rhizobitoxine, Biochim. Biophys. Acta, 227: 671.

    CAS  Google Scholar 

  • Giovanelli, J., Owens, L.D., and Mudd, S. H., 1973, β-Cystathionase. In vivo inactivation by rhizobitoxine and role of the enzyme in methionine biosynthesis in corn seedlings, Plant Physiol., 51:492.

    Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1974, Homoserine esterification in green plants, Plant Physiol, 54: 725.

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1978, Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate, J. Biol. Chem, 253: 5665.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., in press, Sulfur amino acids in plants, in: “Biochemistry of Plants: A Comprehensive Treatise,” Vol. 5, P. K. Stumpf, and E. E. Conn, eds., Academic Press, New York.

    Google Scholar 

  • Grobbelaar, N., and Steward, F. C., 1958, O-Acetylhomoserine in Pispm, Nature, 182: 1358.

    Google Scholar 

  • Madison, J. T., and Thompson, J. F., 1976, Threonine synthetase from higher plants: stimulation by S-adenosylmethionine and inhibition by cysteine, Biochem. Biophys. Res. Commun., 71: 684.

    Article  CAS  Google Scholar 

  • Nagai, S., and Flavin, M., 1967, Acetylhomoserine. An intermediate in the fungal biosynthesis of methionine, J. Biol. Chem., 242: 3884.

    PubMed  CAS  Google Scholar 

  • Owens, L. D., Thompson, J. F., Pitcher, R. G., and Williams, T., 1972, Structure of rhizobitoxine, an antimetabolite enolether amino acid from Rhizobium japonicum, J. Chem. Soc. Chem. Commun., 714.

    Google Scholar 

  • Paszewski, A., and Grabski, J., 1974, Regulation of S-amino acid biosynthesis in Aspergillus nidulans. Role of cysteine and/or homocysteine as regulatory effectors. Mol. Gen. Genet., 132: 307.

    Article  PubMed  CAS  Google Scholar 

  • Paszewski, A., and Grabski, J., 1976, On sulfhydrylation of O-acetylserine and O-acetylhomoserine in homocysteine synthesis in yeast, Acta Biochim. Pol., 23: 321.

    CAS  Google Scholar 

  • Przybylska, J., and Pawelkiewiez, J., 1965, O-Oxalylhomoserine, a new homoserine derivative in young pods of Lathyrus sativus, Bull. Acad. Pol. Sci. Ser. Sci. Biol., 13: 327.

    CAS  Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., and Britten, R. J., 1955, “Studies of Biosynthesis in Escherichia coli,” Chapter 19, Carnegie Institution of Washington Publication 607, Washington, D.C.

    Google Scholar 

  • Siegel, L. M., 1975, Biochemistry of the sulfur cycle, in: “Metabolic Pathways,” Vol. 7, D. M. Greenberg, ed., Academic Press, New York.

    Google Scholar 

  • Yamagata, S., Takeshima, K., and Naiki, N., 1975, O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast: Studies with methionine auxotrophs, J. Biochem., 77: 1029.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Giovanelli, J., Mudd, S.H., Datko, A.H. (1980). Homocysteine Biosynthesis in Plants. In: Cavallini, D., Gaull, G.E., Zappia, V. (eds) Natural Sulfur Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3045-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3045-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3047-9

  • Online ISBN: 978-1-4613-3045-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics