Skip to main content

Recent Studies on the Metabolism of 5’-Methylthioadenosine

  • Chapter
Natural Sulfur Compounds

Abstract

5’-Methylthioadenosine (MTA) represents one of the main products of S-adenosylmethionine (Ado-Met) metabolism and is distributed ubiquitously in micromolar amounts in several prokaryotes and eukaryotes1, 2. Although the chemical structure of this thioether was elucidated in 19243, its biological role as product of methionine metabolism was demonstrated by Schlenk in 19524, even before the discovery of its precursor Ado-Met5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. E. Pegg and H. G. Williams-Ashman, Phosphate stimulated breakdown of 5’-methylthioadenosine by rat ventral prostate, Biochem. J. 115: 241 (1969).

    PubMed  CAS  Google Scholar 

  2. A. J. Ferro, Function and metabolism of 51-methylthioadenosine, in: “Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/North-Holland, New York (1979).

    Google Scholar 

  3. U. Suzuki, S. Odake, and T. Mori, Uber einen neuen schwefelhaltigen Bestandteil der Hefe, Biochem. Z. 154: 278 (1924).

    CAS  Google Scholar 

  4. L. Raymond, L. Smith, and F. Schlenk, Determination of adenine thiomethylriboside and 5-thiomethylribose, and their differentiation from methionine, Arch. Biochem. Biophys. 38: 159 (1952).

    Article  Google Scholar 

  5. G. L. Cantoni, S-Adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosine triphosphate, J. Biol. Chem. 204: 403 (1953).

    CAS  Google Scholar 

  6. W. A. Klee, and S. H. Mudd, The conformation of ribonucleosides in solution. The effect of structure on the orientation of the base, Biochemistry 6: 988 (1967).

    Article  PubMed  CAS  Google Scholar 

  7. J. I. Toohey, Methylthio group cleavage from methylthioadenosine. Description of an enzyme and its relationship to the methyl- thio requirement of certain cells in culture, Biochem. Biophys. Res. Commun. 78: 1273 (1977).

    Google Scholar 

  8. J. I. Toohey, Methylthioadenosine Phosphorylase deficiency in methylthio-dependent cells, Biochem. Biophys. Res. Commun. 83: 27 (1978).

    Article  CAS  Google Scholar 

  9. J. Baddiley, Adenine 5’-deoxy-5’-methylthiopentoside (Adenine thiomethyl pentoside): a proof of structure and synthesis, J. Chem. Soc. (London). 1348 (1951).

    Google Scholar 

  10. A. L. Raymond, Thiosugars, J. Biol. Chem. 107: 85 (1934)

    CAS  Google Scholar 

  11. F. Schlenk, and D. J. Ehninger, Observations on the metabolism of 5’-methylthioadenosine, Arch. Biochem. Biophys. 106: 95 (1964).

    Article  PubMed  CAS  Google Scholar 

  12. V. Zappia, C. R. Zydek-Cwick, and F. Schlenk, The specificity of S-adenosylmethionine derivatives in methyl transfer reactions, J. Biol. Chem. 244: 4499 (1969).

    PubMed  CAS  Google Scholar 

  13. V. Zappia, P. Galletti, A. Oliva, A. De Santis, New methods for preparation and analysis of S-adenosyl(5’)-3-methylthio-propylamine, Anal. Biochem. 79: 535 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. V. Zappia, P. Galletti, M. Porcelli, C. Manna, and F. Delia Ragione, High performance liquid chromatographic separation of natural adenosyl-sulfur compounds (Manuscript in preparation).

    Google Scholar 

  15. V. Zappia, P. Galletti, M. Carteni-Farina, and L. Servillo, A coupled spectrophotometric enzyme assay for methyltransferases, Anal. Biochem. 58: 130 (1974).

    Article  PubMed  CAS  Google Scholar 

  16. V. Zappia, M. Carteni-Farina, and P. Galletti, Adenosylmethionine and polyamine biosynthesis in human prostate, in “The Biochemistry of Adenosylmethionine”, F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk, eds., Columbia University Press, New York (1977).

    Google Scholar 

  17. H. Tabor, and C. W. Tabor, Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine and related amines, Adv. Enzymol. 36: 203 (1972).

    PubMed  CAS  Google Scholar 

  18. H. Tabor and C. W. Tabor, 1,4-Diaminobutane (putrescine), spermidine and spermine, in “Ann. Rev. Biochem.”, E. E. Snell, P. D. Boyer, A. Meister, C. C. Richardson eds., Annual Review Inc., Palo Alto California, vol. 45 (1976).

    Google Scholar 

  19. S. K. Shapiro, and A. N. Mather, The enzymatic decomposition of S-adenosylmethionine, J. Biol. Chem. 233: 631 (1958).

    PubMed  CAS  Google Scholar 

  20. S. H. Mudd, The mechanism of the enzymatic cleavage of S-ade nosylmethionine to a-amino-y-butyro lactone, J. Biol. Chem. 234: 1784 (1959).

    PubMed  CAS  Google Scholar 

  21. V. R. Swiatek, L. N. Simon, and K. L. Chao, Nicotinamide methyltransferase and S-adenosylmethionine: 51-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12: 4670 (1973).

    Article  PubMed  CAS  Google Scholar 

  22. S. Nishimura, Y. Taya, Y. Kuchino, and Z. Ohashi, Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-3-carboxypropyl group from S-adenosylmethionine, Biochem. Biophys. Res. Commun. 57: 702 (1974).

    Article  CAS  Google Scholar 

  23. G. L. Stoner, and M. A. Eisenberg, Purification and properties of 7,8-diaminopelargonic acid aminotransferase. An enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250: 4029 (1975).

    PubMed  CAS  Google Scholar 

  24. J. A. Duerre, A hydrolytic nucleosidase acting on S-adenosyl-homocysteine and on 5’-methylthioadenosine, Biol. Chem. 237: 3737 (1962).

    CAS  Google Scholar 

  25. A. J.Ferro, A. Barrett, and S. K. Shapiro, Kinetic properties and the effect of substrate analogues on 5’-methylthioade- nosine nucleosidase from Escherichia coli, Biochim. Biophys. Acta 438: 487 (1976).

    Google Scholar 

  26. D. L. Garbers, Demonstration of 5’-methylthioadenosine Phosphorylase activity in various rat tissues, some properties of the enzyme from rat lung, Biochim. Biophys. Acta 533: 82 (1978).

    Google Scholar 

  27. V. Zappia, A. Oliva, G. Cacciapuoti, P. Galletti, G. Mignucci and M. Carteni-Farina, Substrate specificity of 5f-methyl- thioadenosine phosphorylase from human prostate, Biochem. J. 175: 1043 (1978).

    PubMed  CAS  Google Scholar 

  28. G. Cacciapuoti, A. Oliva, and V. Zappia, Studies on phosphate-activated 5’-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9: 35 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. A. Gambacorta, M. De Rosa, M. Cartenì-Farina, G. Napolitano, and G. Romeo, Studies on 5’-methylthioadenosine Phosphory-lase from Caldariella acidophila, an extreme thermoacidophilic microorganism, The Special FEBS Meeting on Enzymes Dubrovnik-Cavtat, Abstr. no. S7–11 (1979).

    Google Scholar 

  30. M. Cartenì-Farina, A. Oliva, G. Romeo, G. Napolitano, V. Zappia, M. De Rosa, and A. Gambacorta, Methylthioadenosine Phospho-rylase from Caldariella acidophila. Purification and properties (Manuscript in preparation).

    Google Scholar 

  31. F. Schlenk, C. R. Zydek-Cwick, and N. K. Hutson, Enzymatic deamination of adenosine sulfur compounds, Arch. Biochem. Biophys. 142: 144 (1971).

    Article  PubMed  CAS  Google Scholar 

  32. F. Lawrence, M. Richou, M. Vedel, G. Farrugia, P. Blanchard, and M. Robert-Géro, Identification of some metabolic products of 5’-deoxy-5f-S-isobutylthioadenosine, an inhibitor of virus induced cell transformation, Eur. J. Biochem. 87: 257 (1978).

    Article  PubMed  CAS  Google Scholar 

  33. A. J. Ferro, A. Barrett, and S. K. Shapiro, 5-Methylthioribose kinase a new enzyme involved in the formation of methionine from 5-methylthioribose, J. Biol. Chem. 253: 6021 (1978).

    PubMed  CAS  Google Scholar 

  34. S. K. Shapiro, The function of S-adenosylmethionine in methio nine biosynthesis, in“Transmethylation and Methionine Bio-synthesis”, S. K. Shapiro,and F. Schlenk, eds., The Univer-sity of Chicago Press, Chicago (1965).

    Google Scholar 

  35. Y. Sugimoto, T. Toraya, and S. Fukui, Studies on metabolic role of 5’-methylthioadenosine in Ochromonas malhamensis and other microorganisms, Arch. Microbiol. 108: 175 (1976).

    Article  PubMed  CAS  Google Scholar 

  36. M. De Rosa, S. De Rosa, A. Gambacorta, M. Cartenì-Farina, and V. Zappia, Occurrence and characterization of new polyamines in the extreme thermophile Caldariella acidophila, Biochem. Biophys. Res. Commun. 69: 253 (1976).

    Article  Google Scholar 

  37. M. De Rosa, S. De Rosa, A. Gambacorta, M. Cartenì-Farina, and V. Zappia, The biosynthetic pathway of new polyamines in Caldariella acidophila, Biochem. J. 176: 1 (1978).

    Google Scholar 

  38. V. Zappia, R. Porta, M. Cartenì-Farina, M. De Rosa, and A. Gambacorta, Polyamine distribution in eukaryotes: occurrence of sym-nor-spermidine and sym-nor-spermine in arthropods, FEBS Letters 94: 161 (1978).

    Article  PubMed  CAS  Google Scholar 

  39. J. L. Hoffman, K. P. McConnell, and D. R. Carpenter, Aminoacylation of Escherichia coli methionine t-RNA by selenomethionine, Biochim. Biophys. Acta 199: 531 (1970).

    PubMed  CAS  Google Scholar 

  40. J. K. Coward, N. C. Mo tola, and J. D. Moyer, Polyamine biosynthesis in rat prostate. Substrate and inhibitor properties of 7-deaza analogues of decarboxylated S-adenosylmethionine and 5’-methy1thioadenosine, J. Med. Chem. 20: 500 (1977).

    Article  PubMed  CAS  Google Scholar 

  41. R. L. Pajula, and A. Raina, Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain, FEBS Letters 99: 343 (1979).

    Article  PubMed  CAS  Google Scholar 

  42. S. Linn, B. Eskin, J. A. Lautenberger, D. Lackey, and M. Kimball Host-control modification and restriction enzymes of Escherichia coli B and the role of adenosylmethionine, in “The Biochemistry of Adenosylmethionine”, F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk, eds., Columbia University Press, New York (1977).

    Google Scholar 

  43. P. Casellas, and P. Jeanteur, Protein methylation in animal cells II Inhibition of S-adenosyl-L-methionine protein(arginine) N-methyltransferase by analogs of S-adenosyl-L-homocysteine, Biochim. Biophys. Acta 519: 255 (1978).

    PubMed  CAS  Google Scholar 

  44. R. E. Law, R. M. Sinibaldi, M. R. Cummings, and A. J. Ferro, Inhibition of RNA synthesis in salivary glands of Drosophila melanogaster by 5’-methylthioadenosine, Biochem. Biophys. Res. Commun. 73: 600 (1976).

    Article  PubMed  CAS  Google Scholar 

  45. V. Zappia, M. Porcelli, and F. Delia Ragione, S-Adenosylmethio-nine lyase: specificity and mechanism of reaction (Manuscript in preparation).

    Google Scholar 

  46. A. Oliva, P. Galletti, V. Zappia, W. K. Paik, and S. Kim, Substrate specificity of S-adenosylmethionine: protein-O-methyl-transferase from calf brain, The Special FEBS Meeting on Enzymes, Dubrovnik-Cavtat, Abstr. no. S7–82 (1979).

    Google Scholar 

  47. A. E. Pegg, and H. Hibasami, The role of S-adenosylmethionine in mammalian polyamine synthesis, in “Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/ North-Hoiland, New York (1979).

    Google Scholar 

  48. J. B. Stock, and D. E. Koshland, Jr., Identification of a methyl transferase and a methylesterase as essential genes in bacterial Chemotaxis, in “Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/Norths-Holland, New York (1979).

    Google Scholar 

  49. E. J. Diliberto, Jr., R. F. 0TDea, and O. H. Viveros, The role of protein carboxymethylase in secretory and chemotactic eukaryotic cells, in “Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/North-Holland, New York (1979).

    Google Scholar 

  50. L. E. Eiden, R. T. Borchardt, and C. O. Rutledge, Protein carboxymethylation in neurosecretory processes, in.“Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds. Elsevier/North-Holland, New York (1979).

    Google Scholar 

  51. V. Zappia, P. Galletti, M. Porcelli, G. Ruggiero, and A. Andreana, Uptake of adenosylmethionine and related sulfur compounds by isolated rat liver, FEBS Letters 90: 331 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. A. Raies, F. Lawrence, M. Robert-Gero, M. Loche, and R. Cramer, Effect of 5’-deoxy-51-S-isobutyladenosine on polyoma virus replication, FEBS Letters 72: 48 (1976).

    Article  PubMed  CAS  Google Scholar 

  53. C. Terrioux, M. Crepin, F. Gros, M. Robert-Gero, and E. Lederer, Effect of 5’-deoxy-5f-S-isobutyl-adenosine (SIBA) on mouse mammary tumor virus, Biochem. Biophys. Res. Commun. 83: 673 (1978).

    Article  PubMed  CAS  Google Scholar 

  54. C. Bona, M. Robert-Gero, and E. Lederer, Inhibition of mitogen induced blastogenesis by 5!-deoxy-5f-S-isobutyladenosine, Biochem. Biophys. Res. Commun. 70: 622 (1976).

    Article  PubMed  CAS  Google Scholar 

  55. B. Jacquemont, and J. Huppert, Inhibition of viral RNA methylation Herpes simplex virus type 1 infected by 5’-S-isobutyl adenosine, J. Virol. 22: 160 (1977).

    PubMed  CAS  Google Scholar 

  56. J. Hildesheim, R. Hildesheim, E. Lederer, and J. Yoh, Etude de lfinhibition d’une t-ARN N2-guanine methyl transferase du foie de lapin par des analogues de la S-adenosyl-homocysteine, Biochimie 59: 989 (1972).

    Article  Google Scholar 

  57. G. L. Cantoni, H. Richards, and P. K. Chiang, Inhibitors of S-adenosylhomocysteine hydrolase and their role in the regulation of biological methylation, in “Transmethylation”, E. Usdin, R. T. Borchardt, and C. R. Creveling, eds., Elsevier/ North Holland, New York (1979).

    Google Scholar 

  58. M. Cartenì-Farina, F. Della Ragione, G. Ragosta, A. Oliva, and V. Zappia, Studies on the metabolism of 5’-isobutylthioade- nosine (SIBA). Phosphorolytic cleavage by methylthioadenosine Phosphorylase, FEBS Letters in press (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Zappia, V., Cartenì-Farina, M., Cacciapuoti, G., Oliva, A., Gambacorta, A. (1980). Recent Studies on the Metabolism of 5’-Methylthioadenosine. In: Cavallini, D., Gaull, G.E., Zappia, V. (eds) Natural Sulfur Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3045-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3045-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3047-9

  • Online ISBN: 978-1-4613-3045-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics