Skip to main content

The Roles of Parallel Channels in Early Visual Processing by the Arthropod Compound Eye

  • Chapter
Photoreception and Vision in Invertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

Both the lamina and the medulla are arrays of parallel neural subunits, each primarily receiving an input from a single retinal sampling element. Every subunit contains several parallel channels capable of monitoring different aspects of the incoming signal while the medulla contains abundant lateral pathways for local and global processing interactions between units. Parallel channels in lamina subunits segregate different components of the receptor input, such as wavelength or polarisation sensitivity. In addition one or more channels sums the majority of receptor inputs to provide a highly sensitive contrast coding pathway, typified by cells LI and L2 in the fly. The sensitivity of the contrast channel is matched to the quality of incoming signals so as to improve the efficiency with which they transmit information to the medulla. Non-linear synaptic amplification ensures that all levels of graded response are fully utilised, while intensity dependant lateral and temporal inhibition reduces the range of signal amplitudes to be coded. Two further lamina channels have been recorded from, but these have not been identified or characterised to the same degree. The medulla is far more complicated than the lamina and its cells are smaller and less accessible to recording. With the exception of movement detection, these technical difficulties are compounded by a lack of hypotheses about the procedures required at this level of processing. However the medulla’s ordered anatomy raises hopes that its exploration may one day bridge the gaps between anatomy and function, and lamina and lobula complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnett, D.W. (1972) Spatial and temporal integration properties of units in first optic ganglion of Dipterans. J. Neurophysiol. 35: 429–444.

    Google Scholar 

  • Barlow, H.B. (1961) The coding of sensory messages. In: Current Problems in Animal Behaviour. Ed. W.H. Thorpe & O.L. Zangwill. Cambridge, Cambridge University Press, p. 331–360.

    Google Scholar 

  • Blight, A.R. & Llinas, R. (1980) The non-impulsive stretch receptor complex of the crab: a study of depolarization-release coupling at a tonic sensorimotor synapse. Phil. Trans. R. Soc. Lond. 290B: 219–276.

    Google Scholar 

  • Bowling, D.B. & Michael, C.R. (1980) Projection patterns of single physiologically characterised optic tract fibres in the cat. Nature (Lond.) 286: 899–902.

    Article  Google Scholar 

  • Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.

    Article  Google Scholar 

  • Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).

    Google Scholar 

  • Campos-Ortega, J.A. & Strausfeld, N.J. (1972) Columns and layers in the second synaptic region of the fly’s visual system: the case for two superimposed neural architectures. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Springer, p. 31–36.

    Chapter  Google Scholar 

  • DeVoe, R.D. (1980) Movement sensitivities of cells in the flyfs medulla. J. Comp. Physiol. 138: 93–119.

    Article  Google Scholar 

  • DeVoe, R.D. & Ockleford, E.M. (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol. Cybern. 23: 13–24.

    Article  Google Scholar 

  • Dubs, A. (1982) The spatial integration of signals in the retina and lamina of the fly under different conditions of luminance. J. Comp. Physiol. 146: 321–344.

    Article  Google Scholar 

  • Dubs, A., Laughlin, S.B. & Srinivasan, M.V. (1981) Single photon signals in fly photoreceptors and first order interneurons at behavioural threshold. J. Physiol. 317: 317–334.

    Google Scholar 

  • Franceschini, N. (1983) The retinal mosaic of the fly compound eye. (This volume).

    Google Scholar 

  • Fraser-Rowell, C.H., O’Shea, M. & Williams, J.L.D. (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J. Exp. Biol. 68: 157–188.

    Google Scholar 

  • French, A.S. & Järvilehto, M. (1978) The transmission of information by first and second order neurons of the fly visual system. J. Comp. Physiol. 126: 87–96.

    Article  Google Scholar 

  • Glantz, R.M. (1972) Visual adaptation: a case of non-linear summation. Vision Res. 12: 103–109.

    Article  Google Scholar 

  • Hardie, R.C. (1978) Peripheral Visual Function in the Fly. Ph. D. Thesis. Canberra, Australian National University

    Google Scholar 

  • Hardie, R.C. (1979) Electrophysiological analysis of fly retina. I. Comparative properties of Rl-6 and R7 and 8. J. Comp. Physiol. 129: 19–33.

    Article  Google Scholar 

  • Hardie, R.C., Franceschini, N., Ribi, W. & Kirschfeld, K. (1981) Distribution and properties of sex specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–153.

    Article  Google Scholar 

  • Hausen, K. (1983) The lobula-complex of the fly: Structure, function and significance in visual behaviour (This volume).

    Google Scholar 

  • Hertel, H. (1980) Chromatic properties of identified neurons in the optic lobe of the bee. J. Comp. Physiol. 137: 215–231.

    Article  Google Scholar 

  • Honneger, H.-W. (1978) Sustained and transient units in the medulla of the cricket, Gryllus campestris. J. Comp. Physiol. 125: 259–266.

    Article  Google Scholar 

  • Honneger, H.-W. (1980) Receptive fields of sustained medulla neurons in crickets. J. Comp. Physiol. 136: 191–210.

    Article  Google Scholar 

  • Howard, J. & Snyder, A.W. (1983) Transduction as a limitation on compound eye function and design. Proc. R. Soc. Lond. B. (In press).

    Google Scholar 

  • Hughes, A. (1977) The topography of vision in mammals with contrasting life styles — comparative optics and retinal organization. In: Handbook of Sensory Physiology, Vol. VII/5. Ed. F. Crescitelli. Berlin, Springer, p. 614–756.

    Google Scholar 

  • Hughes, A. (1980) Cat retina and sampling theorem: the relation of transient and sustained brisk-unit cut-off frequency to and cell density. Exp. Brain Res. 40: 250–257.

    Google Scholar 

  • Järvilehto, M. & Zettler, F. (1971) Localised intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z. vergl. Physiol. 75: 422–440.

    Article  Google Scholar 

  • Järvilehto, M. & Zettler, F. (1973) Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforch. 136: 291–306.

    Article  Google Scholar 

  • Kien, J. & Menzel, R. (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. 3. Comp. Physiol. 113: 17–34.

    Article  Google Scholar 

  • Kien, J. & Menzel, R. (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. Comp. Physiol. 113: 35–53.

    Article  Google Scholar 

  • Kirschfeld, K. (1973) Das neurale Superpositionsauge. Fortschr. Zool. 21: 229–257.

    Google Scholar 

  • Kirschfeld, K. & Lutz, B. (1974) Lateral inhibition in the compound eye of the fly, Musca. Z. Naturforsch. 29C: 95–97.

    Google Scholar 

  • Laughlin, S.B. (1973) Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. Comp. Physiol. 84: 335–355.

    Article  Google Scholar 

  • Laughlin, S.B. (1974a) Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. Comp. Physiol. 92: 357–375.

    Article  Google Scholar 

  • Laughlin, S.B. (1974b) Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. Comp. Physiol. 92: 377–396.

    Article  Google Scholar 

  • Laughlin, S.B. (1974c) Resistance changes associated with the response of insect monopolar neurons. Z. Naturforsch. 29C: 449–450.

    Google Scholar 

  • Laughlin, S.B. (1976) Neural integration in the first optic neuropile of dragonflies. IV. Interneuron spectral sensitivity and contrast coding. J. Comp. Physiol. 112: 199–211.

    Article  Google Scholar 

  • Laughlin, S.B. (1981a) Neural principles in the peripheral visual systems of invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B. Ed. H. Autrum. Berlin, Springer, p. 133–280.

    Google Scholar 

  • Laughlin, S.B. (1981b) A simple coding procedure enhances a neuron’s information capacity. Z. Naturforsch. 36C: 910–912.

    Google Scholar 

  • Laughlin, S.B. & Hardie, R.C. (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J. Comp. Physiol. 128: 319–340.

    Article  Google Scholar 

  • Lilly white, P.G. & Laughlin, S.B. (1979) Transducer noise in a photoreceptor. Nature (Lond.) 277: 560–572.

    Article  Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision. Oxford, Clarendon Press.

    Google Scholar 

  • Martin, A.R. (1955) A further study on the statistical composition of the end-plate potential. J. Physiol. 130: 114–122.

    Google Scholar 

  • Matic, T. & Laughlin, S.B. (1981) Changes in the intensity-response function of an insect’s photoreceptor due to light adaptation. 3. Comp. Physiol. 145: 169–177.

    Article  Google Scholar 

  • McCann, G.D. & Arnett, D.W. (1972) Spectral and polarization sensitivity of the Dipteran visual system. J. Gen Physiol. 59: 534–558.

    Article  Google Scholar 

  • Meinertzhagen, I.A. (1983) The rules of synaptic assembly in the developing insect lamina (This volume).

    Google Scholar 

  • Meinertzhagen, I.A. & Armett-Kibel, C. (1982) The lamina monopolar cells in the optic lobe of the dragonfly Sympetrum. Phil. Trans. R. Soc. Lond. 297B: 27–49.

    Google Scholar 

  • Menzel, R. (1974) Spectral sensitivity of monopolar cells in the bee lamina. 3. Comp. Physiol. 93: 337–346.

    Article  Google Scholar 

  • Menzel, R. & Blakers, M. (1976) Colour receptors in the bee eye- morphology and spectral sensitivity. 3. Comp. Physiol. 108: 11–33.

    Article  Google Scholar 

  • Menzel, R. & Snyder, A.W. (1974) Polarised light detection in the bee, Apis mellifera. J. Comp. Physiol. 88: 247–270.

    Article  Google Scholar 

  • Mimura, K. (1976) Some spatial properties in the first ganglion of the fly. J. Comp. Physiol. 105: 64–82.

    Article  Google Scholar 

  • Nässei, D.R. & Waterman, T.H. (1977) Golgi EM evidence for visual information channeling in the crayfish lamina ganglionaris. Brain Res. 130: 556–563.

    Article  Google Scholar 

  • Nicol, D. & Meinertzhagen, I.A. (1982) An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. 3. Comp. Neurol. 207: 29–44.

    Article  Google Scholar 

  • Oliver, B.M. (1952) Efficient coding. Bell System Tech. 3. 31: 724–750.

    Google Scholar 

  • O’Shea, M. & Fraser-Rowell, C.H. (1976) The neuronal basis of a sensory analyser; the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. J. Exp. Biol. 65: 289–308.

    Google Scholar 

  • Reichardt, W. (1970) The insect eye as a model for the uptake, transduction and processing of optical data in the nervous system. In: The Neurosciences: Second Study Programme. Ed. F.O. Schmitt. New York, Rockefeller University Press, p. 494–511.

    Google Scholar 

  • Ribi, W.A. (1981) The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurons. Cell Tissue Res. 215: 443–464.

    Article  Google Scholar 

  • Richards, W.A. (1982) Lightness scale from image intensity distributions. Appl. Optics 21: 2569–2582.

    Article  Google Scholar 

  • Shannon, C.E. & Weaver, W. (1949) The Mathematical Theory of Communication. Urbana, University of Illinois Press.

    Google Scholar 

  • Shaw,S.R. (1968) Organization of the locust retina. Symp. Zool. Soc. Lond. 23: 135–163

    Google Scholar 

  • Shaw,S.R (1975) Retinal resistance barriers and electrical lateral inhibi¬tion. Nature (Lond.) 255: 480–483.

    Article  Google Scholar 

  • Shaw,S.R. (1979) Signal transmission by slow graded potentials in the arthropod peripherial visual system. In: The Neurosciences: Fourth Study Programme. Ed. F.O. Schmitt. Cambridge, MIT Press, p. 275–295.

    Google Scholar 

  • Shaw,S.R. (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Neurones Without Impulses. Ed. A. Roberts & B.M.H. Bush. Cambridge, Cambridge University Press, p. 61–116.

    Google Scholar 

  • Srinivasan, M.V. & Dvorak, D. (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. 140: 1–23.

    Article  Google Scholar 

  • Srinivasan, M.V., Laughlin, S.B. & Dubs, A. (1982) Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. 216B: 427–459

    Article  Google Scholar 

  • Stavenga, D.G. (1980) Pseudopupils of compound eyes. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Springer, p. 357–440.

    Google Scholar 

  • Strausfeld, N.J. (1983) Functional neuroantomy of the blowfly’s visual system (This volume).

    Google Scholar 

  • Strausfeld, N.J. & Nässei, D.R. (1981) Neur ©architecture serving compound eyes of crustacea and insects. In: Handbook of Sensory Physiology, Vol. VII/6B. Ed. H. Autrum. Berlin, Springer, p. 1–132.

    Google Scholar 

  • Wässel, H., Peichl, L. & Boycott, B.B. (1981) Dendritic territories of cat retinal ganglion cells. Nature (Lond.) 292: 344–345.

    Article  Google Scholar 

  • Wehner, R. (1976) Structure and function of the peripheral visual pathways in Hymenopterans. In: Neural Principles in Vision. Ed. F. Zettler & R. Weiler. Berlin, Springer, p. 280–333.

    Chapter  Google Scholar 

  • Zettler, F. & Autrum, H. (1975) Chromatic properties of lateral inhibition in the eye of the fly. J. Comp. Physiol. 97: 181–188.

    Article  Google Scholar 

  • Zettler, F. & Järvilehto, M. (1971) Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. vergl. Physiol. 75: 402–421.

    Article  Google Scholar 

  • Zettler, F. & Järvilehto, M. (1972) Lateral inhibition in an insect eye. Z. vergl. Physiol. 76: 233–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Laughlin, S. (1984). The Roles of Parallel Channels in Early Visual Processing by the Arthropod Compound Eye. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics