Skip to main content

Random Packing of Structural Units and the First Sharp Diffraction Peak in Glasses

  • Chapter
Physics of Disordered Materials

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

Diffraction studies of glasses often yield a structure factor S(Q) with a pronounced first sharp diffraction peak (FSDP) at low Q values in the vicinity of Q ≅ 1.0-1.5 Å-1. This feature, while often quite prominent, has none-the-less eluded detailed explanation because it arises from correlations at distances of 4.5 – 6.0 Å rather than from simple nearest- or next-nearest-neighbors. In fact, much of the local structure of the glass can be inferred without reference to this FSDP. We discuss here this diffraction feature and how it gives a direct clue to the connectivity of glasses and amorphous solids over intermediate ranges through the packing of basic structural or molecular units. These considerations are common to a large number of amorphous solids and lead to a better understanding of the atomic structure of glasses as nominally diverse, for example, as SiO2, GeSe2 A2S3 P2Se3 MoS3, and the elemental glasses for which dense random packing is a more familiar concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. E. Warren, H. Krutter, and 0. Morningstar, J. Am. Ceram. Soc. 19, 202 (1936).

    Article  Google Scholar 

  2. R. L. Mozzi and B. E. Warren, J. Appl. Cryst. 2, 164 (1969).

    Article  Google Scholar 

  3. S. C. Moss, Proc. 5th Int. Conf. on Amorphous and Liquid Semiconductors (Taylor and Francis, Ltd.), p. 17 (1974).

    Google Scholar 

  4. S. Veprek and H. U. Beyeler, Phil. Mag. B 44, 557 (1981).

    Article  Google Scholar 

  5. AC. Wright, R. N. Sinclair, and A. J. Leadbetter, JNCS (in press); J. C. Phillips, JNCS 43, 37 (1981). While Phillips clearly identified the FSDP as a significant feature in the diffraction from glasses, his point of view is rather divergent from the one developed in this paper.

    Google Scholar 

  6. AC. Wright, R. N. Sinclair, and A. J. Leadbetter, JNCS (in press); J.C. Phillips, JNCS 43, 37 (1981). While Phillips clearly identified the FSDP as a significant feature in the diffraction from glasses, his point of view is rather divergent from the one developed in this paper.

    ADS  Google Scholar 

  7. L. E. Busse and S. R. Nagel, Phys. Rev. Lett. 47, 1848 (1981); L. E. Busse, Phys. Rev. B 29 3639 (1981).

    Article  ADS  Google Scholar 

  8. A.I. Soklakov and V. V. Nechaeva, Sov. Phy. Solid State 9, 715 (1967).

    Google Scholar 

  9. M. Misawa and N. Watanabe, National Laboratory for High Energy Physics, Tsukuba, Japan Report KENS-IV (1983) p. 13.

    Google Scholar 

  10. C. Lin, L. E. Busse, S. R. Nagel, and J. Faber, Phys. Rev. B 29, 5060 (1984).

    Article  ADS  Google Scholar 

  11. G. N. Greaves, S. R. Elliot, and E. A. Davis, Adv. Phys. 28, 49 (1979).

    Article  ADS  Google Scholar 

  12. M. F. Daniel, A. J. Leadbetter, A. C. Wright, and R. N. Sinclair, JNCS 32., 271 (1979).

    ADS  Google Scholar 

  13. D. L. Price, M. Misawa, S. Susman, T. I. Morrison, G. K. Shenoy, and M. Grimsditch, JNCS 66, 443 (1984); see also this paper.

    ADS  Google Scholar 

  14. G. Ditmar and H. Schafer, Acta Cryst. B 31 2060 (1975); 32, 1188.

    Article  Google Scholar 

  15. E. Zintl and K. Loosen, Z. Phys. Chem. (Leipzig) 174, 301 (1935).

    Google Scholar 

  16. R. J. Bell and P. Dean, Phil. Mag. 25, 1381 (1972).

    Article  ADS  Google Scholar 

  17. P. H. Fuoss, P. Eisenberger, W. K. Warburton, and A. Bienenstock, Phys. Rev. Lett. 46, 1537 (1981).

    Article  ADS  Google Scholar 

  18. R. J. Nemanich, F. L. Galeener, J. C. Mikkelsen, Jr., G. A. N. Connell, G. Etherington, A. C. Wright, and R. N. Sinclair, Physica 117 B and 118 B, 959 (1983).

    Google Scholar 

  19. M. Tenhover, M. A. Hazle, and R. K. Grasselli, Phys. Rev. Lett. 54, 404 (1983).

    Article  ADS  Google Scholar 

  20. J. L. Robertson, S. C. Moss, and D. L. Price, work in progress.

    Google Scholar 

  21. J. M. Carpenter and D. L. Price, Phys. Rev. Lett. 54, 441 (1985).

    Article  ADS  Google Scholar 

  22. R. W. Johnson, M. Arai, M. Grimsditch, J. A. McMillan, T. I. Morrison, D. L. Price, G. K. Shenoy, S. Susman, and K. Volin (to be published).

    Google Scholar 

  23. J. P. de Neufville, S. C. Moss, and S. R. Ovshinsky, JNCS 13, 191 (1973).

    Google Scholar 

  24. A.S. Apling, A. J. Leadbetter, and A. C. Wright, JNCS 23, 369.

    Google Scholar 

  25. C.S Lu and J. Donahue, J. Am. Chem. Soc. 66, 818 (1944).

    Article  Google Scholar 

  26. R. J. Nemanich, G. A. N. Connell, T. M. Hayes, and R. E. Street, Phys. Rev. 18, 6900 (1978).

    Article  ADS  Google Scholar 

  27. M. Arai, R. W. Johnson, D. L. Price, S. Susman, M. Gay, and J. E. Enderby (to be published).

    Google Scholar 

  28. F. Z. Chien, S. C. Moss, K. S. Liang, and R. R. Chianelli, Phys. Rev. B 29, 4606 (1984).

    Article  ADS  Google Scholar 

  29. G. S. Cargill III, in Solid State Physics, vol. 30 (New York: Academic Press, 1975) p. 281; “Atomic Energy Review,” IAEA Supplement No. 1 (1981) p. 63.

    Google Scholar 

  30. K. Doi, JNCS 68, 17 (1984).

    ADS  Google Scholar 

  31. P. Steinhardt, R. Alben, and D. Weaire JNCS 15, 199 (1974).

    ADS  Google Scholar 

  32. P. Chaudhari, J. F. Graczyk, D. Henderson, and P. Steinhardt, Phil. Mag. 31, 727 (1975).

    Article  ADS  Google Scholar 

  33. J. F. Sadoc, JNCS 44, 1 (1981).

    ADS  Google Scholar 

  34. C. D. Thomas and N. G. Gingrich, J. Chem. Phys. 6, 659 (1938).

    Article  ADS  Google Scholar 

  35. J. S. Lannin and B. V. Shanabrook, JNCS 49, 209 (1982); R. S. Pomian, J. S. Lannin, and B. V. Shanabrook, Phys. Rev. B 27, 4887 (1983).

    ADS  Google Scholar 

  36. J. S. Lannin and B. V. Shanabrook, JNCS 49, 209 (1982); R. S. Pomian, J. S. Lannin, and B. V. Shanabrook, Phys. Rev. B 27, 4887 (1983).

    Article  ADS  Google Scholar 

  37. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, Solid State Commun. 5, 113 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press , New York

About this chapter

Cite this chapter

Moss, S.C., Price, D.L. (1985). Random Packing of Structural Units and the First Sharp Diffraction Peak in Glasses. In: Adler, D., Fritzsche, H., Ovshinsky, S.R. (eds) Physics of Disordered Materials. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2513-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2513-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9519-8

  • Online ISBN: 978-1-4613-2513-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics