Skip to main content

Natural Resistance Mechanisms in Herpesvirus Infections

  • Chapter
Viruses, Immunity, and Immunodeficiency

Abstract

Natural resistance mechanisms require no presensitization and are ready to immediately respond against an invading microorganism (1). Although other barriers may participate in such responses against herpesvirus infections, macrophages, natural killer (NK) cells, and the rapid production of interferon appear to play central roles in host defense. Since the role of macrophages will be covered elsewhere in this book by Soren Mogensen, this chapter will concentrate on the role of NK cells and interferon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. C. Allison, J. S. Harington and M. Birbeck, An examination of the cytotoxic effects of silica on macrophages, J. Exp. Med. 124: 141 (1966).

    Article  PubMed  CAS  Google Scholar 

  2. A. J. Nahmias and B. Roizman, Infection with herpes-simplex viruses 1 and 2, part 1, part 2, part 3, New Eng. J. Med. 289:667, 719, 781 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. S. E. Bloomfield and C. Lopez, Herpes infections in the immunosuppressed host, Am. Acad, of Ophthal. 87: 1226 (1980).

    CAS  Google Scholar 

  4. J. D. Meyers, N. Fluornoy, and E. D. Thomas, Infection with herpes simplex virus and cell-mediated immunity after marrow transplant, J. Infect. Pis., 142: 338 (1980).

    Article  CAS  Google Scholar 

  5. R. E. Stiehm, The human neonate as an immunocompromised host, in: “Pathogenesis, Prevention and Therapy,” J. Verhoef, P. K. Petterson, and P. G. Quie, eds., Elsevier/North Holland, p. 77 (1980).

    Google Scholar 

  6. P. S. Morahan, E. R. Kern, and L.A. Glasgow, Immunomodular-induced resistance against herpes simplex virus, Proc. Soc. Exp. Biol. Med. 154: 615 (1977).

    PubMed  CAS  Google Scholar 

  7. C. Lopez, Genetics of natural resistance to herpesvirus infections in mice, Nature 258: 152 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. C. Lopez, Resistance to herpes simplex virus-type 1 (HSV-1) in: “Current Topics in Microbiology and Immunology,” Vol. 92, O. Haller, ed., p.15 (1981).

    Google Scholar 

  9. H. M. Höchen Kirchner, J. M. Hirt, and K. Münk, Immunological studies of HSV infections of resistant and susceptible inbred strains of mice, Z. Immunit Htsforsch. 154: 147 (1978).

    Google Scholar 

  10. D. Armerding, P. Mayer, M. Scriba, A. Hren, and H. Rossiter, In vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains, Immunobiol. 160:217 (1981).

    CAS  Google Scholar 

  11. C. Lopez, Resistance to HSV-1 in the mouse is gover £d by two major, independently segregating non-H-2 loci, Immunogenetics 11: 87 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. C. Lopez, Iimnunological nature of genetic resistance of mice to herpes simplex virus type 1 infection, in: “Oncogenesis and Herpesviruses,” G. de-Thé, R. Henle, and F. Rapp, eds., W.H.O., Lyon, France p. 775 (1978)

    Google Scholar 

  13. C. Lopez, R. Ryshke and M. Bennett, Marrow dependent cells depleted by 89 Sr mediate genetic resistance to herpes simplex virus 1 infection, Infec. Immun. 28: 1028 (1980).

    CAS  Google Scholar 

  14. M. Bennett, Prevention of marrow allograft rejection with radioactive strontium: evidence for marrow-dependent effector cells, J. Immunol. 110: 510 (1973).

    PubMed  CAS  Google Scholar 

  15. R. Zawatzky, J. Hilfenhaus, and H. Kirchner, Resistance of nude mice to herpes simplex virus and correlation with in vitro production of interferon, Cell. Immunol. 47: 424 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. A. J. Schlabach, D. Martinez, A. K. Field, and A. A. Tytell, Resistance of C57 mice to primary systemic herpes simplex virus infection, macrophage dependence and T-cell independence, Infect. Immun. 26: 615 (1979).

    PubMed  CAS  Google Scholar 

  17. R. W. Price, and J. Schmitz, Reactivation of latent herpes simplex virus infection of the autonomic nervous system by postganglion neurectomy, Infect. Immun. 19: 523 (1978).

    PubMed  CAS  Google Scholar 

  18. K. E. Schneweis and V. Saftig, The vaginal herpes simplex virus infection of resistant (C57 BL) mice, Int. Herpes Virus Workshop, p. 144 (1981).

    Google Scholar 

  19. R. B. Herberman, ed., “Natural Cell-Mediated Immunity Against Tumors,” Academic Press (1980).

    Google Scholar 

  20. R. Kiessling and O. Haller, Natural killer cells in the mouse, an alternative immune surveillance mechanism, Contemp. Top. Immunobiol. 8: 171 (1978).

    PubMed  CAS  Google Scholar 

  21. O. Haller and H. Wigzell, Suppression of natural killer cell activity, with radioactive strontium: effector cells are marrow dependent, J. Immunol. 119: 1503 (1977).

    Google Scholar 

  22. M. Gidlund, A. Orl, H. Wigzell, A. Senik, and I. Gresser, Enhanced NK cell activity in mice injected with interferon and interferon inducers, Nature 273: 759 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. R. M. Welch, Mouse natural killer cells: induction, specificity and function, J. Immunol. 121: 1631 (1978).

    Google Scholar 

  24. R. D. Diamond, R. Keller, G. Lee, and D. Finkel, Lysis of cytomegalovirus-infected human fibroblasts and transformed human cells by peripheral blood lymphoid cells from normal human donors (39650), Proc. Soc. Exp. Biol. Med. 154: 259 (1977).

    PubMed  CAS  Google Scholar 

  25. M. J. Anderson, Innate cytotoxicity of CBA mouse spleen cells to Sendaivirus infected L-cells, Infect. Immun. 20: 608 (1978).

    PubMed  CAS  Google Scholar 

  26. D. Santoli, G. Trinchieri, and F. S. Lief, Cell-mediated cytotoxicity against virus-infected target cells in humans. I. Characterization of the effector lymphocyte. J. Immunol. 121: 526 (1978a).

    PubMed  CAS  Google Scholar 

  27. V. Kumar, J. Ben-Ezra, M. Benngtt, and G. Sonnenfeld, Natural killer cells in mice treated with 89 Sr: normal target binding cell numbers but inability to kill even after interferon administration, J. Immunol., 123: 1832 (1979).

    PubMed  CAS  Google Scholar 

  28. J. A. Lust, V. Kumar, R. C. Burton, S. P. Bartlett, and M. Bennett, Heterogeneity of natural killer cells in mouse, J. Exp. Med. 154: 306 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. P. A. Fitzgerald, R. Evans, D. Kirkpatrick and C. Lopez, Heterogeneity of human NK cells: comparison of effectors that lyse HSV-l-infected fibroblasts and K562 erythroleukemia targets. J. Immunol. 130: 1663 (1983).

    PubMed  CAS  Google Scholar 

  30. G. Trinchieri and D. Santoli, Antiviral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis, J. Exp. Med. 147: 1299 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. P. A. Fitzgerald, V. von Wussow and C. Lopez, Role of interferon in natural kill of HSV-1 infected fibroblasts. J. Immunol. 129: 819 (1982).

    PubMed  CAS  Google Scholar 

  32. C. Lopez, D. Kirkpatrick, S. Read, P. A. Fitzgerald, J. Pitt, S. Pahwa, C. Y. Ching, and E. M. Smithwick, Correlation between low natural kill of HSV-1 infected fibroblasts, NK(HSV-l) and susceptibility to herpesvirus infections, J. Infect. Dis. 147: 1030 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. M. Miller, Phagocyte function in the neonate: selected aspects, Pediatrics 64: 709 (1979).

    PubMed  CAS  Google Scholar 

  34. M. Blaese, W. Strober, and T. A. Waldman, Immunodeficiency in the Wiscott-Aldrich Syndrome in: “Immunodeficiency in Man and Animals,” D. Bergsma, R. A. Good, and J. Finstad, eds., Sinauer Assoc., Inc., Sunderland, Maryland, p. 250 (1975).

    Google Scholar 

  35. M. D. Cooper, H. P. Chase, J. T. Lawman, W. Krivit, and R. A. Good, Wiscott-Aldrich syndrome: an immunologic deficiency disease involving the afferent limb of immunity, Amer. Med. 44: 499 (1968).

    Article  CAS  Google Scholar 

  36. A. Isaacs and J. Lindemann, Virus interference. I. The interferons, Proc. Roy. Soc. Ser. B 147: 258 (1956).

    Article  Google Scholar 

  37. E. R. Stiehm, L. H. Kronenberg, H. M. Rosenblatt, Y. Bryson, and T. C. Merigan, Interferon: immunobiology and clinical significance, Ann. Int. Med. 96: 80 (1982).

    PubMed  CAS  Google Scholar 

  38. T. L. Stanwick, D. E. Campbell, and A. J. Nahmias, Spontaneous cytotoxicity mediated by human monocyte-macrophages against human fibroblasts infected with herpes simplex virus—augmentation by interferon, Cell. Immunol. 53: 413 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. I. Gresser, M. G. Tovey, C. Maury and M.-T. Bandu, Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex, Maloney sarcoma, vesicular stomatitis, Newcastle disease, and influenza viruses, J. Exp. Med. 144: 1316 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. H. Engler, R. Zawatzky, A. Goldbach, C. H. Shroder, C. Weyand, G. J. Hammerling, and H. Kirchner, Experimental infection of inbred mice with herpes simplex virus. II. Interferon production and activation of natural killer cells in the peritoneal exudate, J. Gen. Virol. 55: 25 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. H. H. Peter, H. Dallugge, R. Zawatzky, S. Euler, W. Leibold, and H. Kirchner, Human peripheral null lymphocytes. II. Producers of type 1 interferon upon stimulation with tumor cells, herpes simplex virus and Corynebacterium parvum, Eur. J. Immunol. 10: 547 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. J. D. Djeu, N. Stocks, and K. Zoom, Positive self regulation of cytotoxicity upon exposure to influenza and herpes viruses, J, Exp. Med. 156: 1222 (1982).

    Article  CAS  Google Scholar 

  43. J.-L. Virelizier, Viral infections in patients with selective disorders of the interferon system, Fifth Int. Congress of Virology, p. 152, (1981).

    Google Scholar 

  44. F. P. Siegal, C. Lopez, G. S. Hammer, A. E. Brown, S. J. Kornfeld, J. Gold, J. Hassett, S. Z. Hirchman, C. Cunningham-Rundles, B. R. Adelsberg, D. M. Parham, M. Siegal, S. Cunningham-Rundles, and D. Armstrong, Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions, New Eng. J. Med. 305: 1439 (1981).

    Article  PubMed  CAS  Google Scholar 

  45. C. Lopez, P. A. Fitzgerald, and F. P. Siegal, Severe acquired immunodeficiency syndrome in male homosexuals: diminished capacity to make interferon alpha in vitro is associated with susceptibility to severe opportunistic infections, J. Infect. Pis. 148: 962 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lopez, C. (1986). Natural Resistance Mechanisms in Herpesvirus Infections. In: Szentivanyi, A., Friedman, H. (eds) Viruses, Immunity, and Immunodeficiency. University of South Florida International Biomedical Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2185-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2185-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9286-9

  • Online ISBN: 978-1-4613-2185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics