Skip to main content

Oxidations of Organic Compounds Catalyzed by Copper- and Cobalt-Amine Complexes

  • Chapter
Organic Syntheses by Oxidation with Metal Compounds

Abstract

Selective oxidations of organic substrates catalyzed by transition metal complexes capable of activating oxygen have been of interest since Glaser observed1 more than a hundred years ago that phenylacetylene underwent smooth aerial oxidation to diphenylacetylene when cuprous chloride in ammonia was used as a catalyst. This reaction has since been applied to a wide variety of organic compounds possessing the ethynyl grouping. The Glaser cop-per-amine system has been used in various modifications for many years up to the 1950s when two independant groups found a breakthrough in the oxidation of phenols using a copper-amine complex as a catalyst.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Glaser, Ber. 2, 422 (1869).

    Google Scholar 

  2. W. Brackman and E. Havinga. Rec. Trav. Chim. 74, 937 (1955)

    Article  CAS  Google Scholar 

  3. A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance, J. Am. Chem. Soc. 81, 6335 (1959).

    Article  CAS  Google Scholar 

  4. H. A. P. de Jongh, C. R. H. I. de Jonge, and W. J. Mijs, J. Org. Chem. 36, 3160 (1970).

    Article  Google Scholar 

  5. H. Takahashi, T. Kajimoto and J. Tsuji, Synth. Commun. 2, 181 (1972).

    Article  CAS  Google Scholar 

  6. H. C. Volger and W. Brackman, Rec. Trav. Chim. 84, 579 (1965).

    Article  CAS  Google Scholar 

  7. H. Hayashi, K. Kawasaki, and T. Murata, Chem. Lett. 1974, 1079.

    Google Scholar 

  8. H. M. van Dort and H. J. Geursen, Rec. Trav. Chim. 86. 520 (1967).

    Article  Google Scholar 

  9. C. R. H. I. de Jonge, H. J. Hageman, W. G. B. Huysmans and W. J. Mijs, J. Chem. Soc. Perkin Trans. II 1973, 1276

    Google Scholar 

  10. C. R. H. I. de Jonge, H. J. Hageman, G. Hoentjen, and W. J. Mijs, Org. Synth. 57, 78 (1977).

    Google Scholar 

  11. E. J. Corey, R. L. Danheiser, S. Chandrasekaran, P. Siret, G. E. Keck, and J. L. Gras, J. Am. Chem. Soc. 100, 8031 (1978).

    Article  CAS  Google Scholar 

  12. G. A. Russell, A. G. Bemis, E. J. Geels, E. G. Jansen, and A. J. Move. Adv. Chem. ScL 1, 174 (1968).

    Article  Google Scholar 

  13. G. A. Russell, A. J. Moye, and K. Nagpal, J. Am. Chem. Soc. 84. 4154 (1962).

    Article  CAS  Google Scholar 

  14. A. Nishinaga, H. Tomita, and T. Matsuura, Tetrahedron Lett. 1979, 2893.

    Google Scholar 

  15. A. S. Hay, J. Org. Chem. 27, 3320 (1962).

    Article  CAS  Google Scholar 

  16. F. Bohlmann, Ber. 86, 657 (1953).

    Article  CAS  Google Scholar 

  17. Yu. S. Zal’kind and B. W. Fundyler. J. Gen. Chem. (USSR) 9, 1725 (1939); cf. Chem. Ahstr. 34, 3719 (1940).

    Google Scholar 

  18. A. Vaitiekunas and F. F. Nord, J. Am. Chem. Soc. 76, 2733 (1954).

    Article  CAS  Google Scholar 

  19. A. Chicoisne, G. Duport, and R. Dulou, Bull. Soc. Chim. France 1957, 1232.

    Google Scholar 

  20. E. Schjanberg, Ber. 71, 569 (1938).

    Google Scholar 

  21. J. F. Arens, H. C. Volger, T. Doornbos, J. Bonnema, J. W. Griedanus and J. H. van der Hende. Rec. Trav. Chim. 75, 1459 (1956).

    Article  CAS  Google Scholar 

  22. F. Bohlmann, E. Inhoflen, and J. Poiitt, Ann. Chem. (Liebigs) 604, 207 (1957).

    Article  CAS  Google Scholar 

  23. M. Akhtar, T. A. Richards, and B. C. L. Weedon, J. Chem. Soc. 1959, 933. 23.

    Article  Google Scholar 

  24. E. R. H. Jones, H. H. Lee, and M. C. Whiting, J. Chem. Soc. 1960, 341.

    Google Scholar 

  25. J. B. Armitage, E. R. H. Jones, and M. C. Whiting, J. Chem. Soc. 1952, 2014.

    Google Scholar 

  26. C. L. Cook, E. R. H. Jones, and M. C. Whiting, J. Chem. Soc. 1952, 2883.

    Google Scholar 

  27. J. B. Armitage, N. Entwhistle, E. R. H. Jones, and M. C. Whiting, J. Chem. Soc. 1954, 147.

    Google Scholar 

  28. P. M. Jacobs and M. A. Davis, J. Org. Chem. 44, 178 (1979).

    Article  CAS  Google Scholar 

  29. U. Fritzsche and S. Hunig, Tetrahedron Lett. 1972, 4831.

    Google Scholar 

  30. F. Straus, Ann. Chem. (Liebigs) 342, 190 (1905).

    Article  Google Scholar 

  31. C. M. Orlando, Jr., J. Org. Chem. 33, 2516 (1968).

    Article  CAS  Google Scholar 

  32. V. V. Karpov and M. L. Khidekel’, J. Org. Chem. (USSR) 3, 1625 (1967).

    Google Scholar 

  33. M. S. Kharasch and G. Sosnovsky, Tetrahedron 3, 97 (1958).

    Article  CAS  Google Scholar 

  34. R. A. Walton, Quart. Rev. Chem. Soc. 19, 136 (1965).

    Article  Google Scholar 

  35. H. A. P. de Jongh, C. R. H. I. de Jonge, H. J. Sinnige, W. J. de Klein, W. G. B. Huysmans, W. J. Mijs, W. J. van der Hoek, and J. Smidt, J. Org. Chem. 37, 1960 (1972).

    Article  Google Scholar 

  36. V. van Rheenen. Tetrahedron Lett. 1969, 985.

    Google Scholar 

  37. J. Tsuji, H. Takayanagi, Tetrahedron 34, 641 (1978).

    Article  CAS  Google Scholar 

  38. A. Nishinaga, T. Tojo, and T. Matsuura, J. Chem. Soc. Chem. Commun. 1974, 896.

    Google Scholar 

  39. A. Nishinaga, Chem. Lett. 1975, 273.

    Google Scholar 

  40. A. Nishinaga, K. Watanabe, and T. Matsuura, Tetrahedron Lett. 1974, 1291.

    Google Scholar 

  41. T. Matsuura, K. Watanabe, and A. Nishinaga, Chem. Coomun. 1970, 163.

    Google Scholar 

  42. C. R. H. I. de Jonge, unpublished results.

    Google Scholar 

  43. Unpublished results obtained by A. J. Leusink and W. Drenth of the Organisch Chemisch Instituut TNO, Utrecht, The Netherlands.

    Google Scholar 

  44. J. R. Wasson, T. P. Mitchell, and W. H. Bernard, J. Inorg. Nucl. Chem. 30, 2865 (1968).

    Article  CAS  Google Scholar 

  45. H. Diehl and C. C. Hach, Inorg. Syn. 3, 196 (1950).

    Article  Google Scholar 

  46. J. P. Riley, J. Chem. Soc. 1953, 2193.

    Google Scholar 

  47. H. A. Stansbury Jr. and W. R. Proops. J. Org. Chem. 27, 320 (1962).

    Article  CAS  Google Scholar 

  48. K. P. Callahan and M. F Hawthorne, J. Am. Chem. Soc. 95, 4574 (1973).

    Article  CAS  Google Scholar 

  49. R. Eastmond, T. R. Johnson, and D. R. M. Walton, Tetrahedron 28. 4601 (1972).

    Article  CAS  Google Scholar 

  50. A. S. Hay, J. Org. Chem. 34, 1160 (1969).

    Article  CAS  Google Scholar 

  51. J. B. Armitage, C. L. Cook, N. Entwhistle, E. R. H. Jones, and M. C. Whiting, J. Chem. Soc. 1952, 1998.

    Google Scholar 

  52. P. J. Ashworth, E. R. H. Jones, G. H. Mansfield, K. Schögl, J. M. Thompso, and M. C. Whiting, J. Chem. Soc. 1958, 950.

    Google Scholar 

  53. R. Paul and S. Tchelitcheff, Bull. Soc. Chim. France 1953. 417.

    Google Scholar 

  54. W. Reppe, Ann. Chem. (Licbigs) 596, 1 (1955).

    Google Scholar 

  55. Yu. S. Zal’kind, F. B. Fundyler, Ber. 64, 128 (1936).

    Google Scholar 

  56. R. Ahmad and B. C. L. Weedon, J. Chem. Soc. 1953, 3286.

    Google Scholar 

  57. J. Colonge and Y. Infamet, Bull. Soc. Chim. France 1960. 1914.

    Google Scholar 

  58. K. Bowden, I. Heilbron, E. R. H. Jones, and K. H. Sargen, J. Chem. Soc. 1947, 1579.

    Google Scholar 

  59. B. L. Shaw and M. C. Whiting, Chem. Ind. 1953, 409.

    Google Scholar 

  60. Yu S Zal’kind and I. M. Gverdtsiteli, J. Gen. Chem. (USSR) 9, 971 (1939); cf. Chem. Abstr. 33, 8569 (1939).

    Google Scholar 

  61. M. F. Ansell, W. J. Hickinbottom, and A. A. Hyatt. J. Chem. Soc. 1955. 1781.

    Google Scholar 

  62. F. Bohlmann and H. Sinn, Ber. 88, 1869 (1955).

    Article  CAS  Google Scholar 

  63. G. F. Hennion and A. L. Perrino, J. Org. Chem. 26, 1073 (1961).

    Article  CAS  Google Scholar 

  64. R. Epsztein and I. Marszak, C R. Acad. Sci. 243, 283 (1956).

    CAS  Google Scholar 

  65. M. D. Cameron and G. E. Bennett, J. Org. Chem. 22, 557 (1957).

    Article  CAS  Google Scholar 

  66. M. Ballester, J. Castaner, J. Riera. I. Taberner, and G Cornet, Tetrahedron Lett. 1977, 2353.

    Google Scholar 

  67. R. M. McQuilkin, P. J. Garratt, and F. Sondheimer, J. Am. Chem. Soc. 92, 6682 (1970).

    Article  Google Scholar 

  68. U.S. 3.210,384.

    Google Scholar 

  69. C. R. H. I. De Jonge, unpublished results.

    Google Scholar 

  70. S. Hibino and S. M. Weinreb, J. Org. Chem. 42, 232 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

de Jonge, C.R.H.I. (1986). Oxidations of Organic Compounds Catalyzed by Copper- and Cobalt-Amine Complexes. In: Mijs, W.J., de Jonge, C.R.H.I. (eds) Organic Syntheses by Oxidation with Metal Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2109-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2109-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9248-7

  • Online ISBN: 978-1-4613-2109-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics