Skip to main content

Mechanisms of α1-Adrenergic and Related Responses

Roles of Calcium, Phosphoinositides, Guanine Nucleotides, Diacylglycerol, Calmodulin, and Changes in Protein Phosphorylation

  • Chapter
Cell Membranes

Abstract

Activation of the sympathetic nervous system leads to the release of catecholamines (principally epinephrine) from the adrenal medulla into the blood stream and of norepinephrine from adrenergic nerve endings throughout the body. The effects of these catecholamines are thus widespread and are mediated by four different types of adrenergic receptors, located on the plasma membranes of their target cells. Two of these receptors (β1 and β2) are linked positively to adenylate cyclase, and the effects of their activation can be attributed to an increase in cellular cAMP in almost all situations. The other two receptors (α1 and α2) elicit quite different responses. Activation of α2-adrenergic receptors leads to inhibition of adenylate cyclase. Although most of the resulting physiological responses can be attributed to the decline in cAMP, there are some tissues (platelets, pancreatic islets) in which this is questionable. Activation of α1-adrenergic receptors is linked to the breakdown of polyphosphoinositides in the plasma membrane with the generation of two intracellular messages, namely myoinositol 1,4,5-P3 (IP3) and 1,2-diacylglycerol (DAG) (Figure 1). The function of IP3 is to release Ca2+ from intracellular stores, which are probably located in the endoplasmic reticulum, thereby raising cytosolic Ca2+ and altering the activity of Ca2+ (calmodulin)-sensitive proteins; whereas that of DAG is to activate the Ca2+-phospholipid-dependent protein kinase C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977, Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate, Biochem. J. 162:61–73.

    PubMed  CAS  Google Scholar 

  • Adelstein, R. S., and Conti, M. A., 1975, Phosphorylation of platelet myosin increases actinactivated myosin ATPase activity, Nature 256:597–598.

    PubMed  CAS  Google Scholar 

  • Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49:921–956.

    PubMed  CAS  Google Scholar 

  • Agranoff, B. W., Murthy, P., and Seguin, E. B., 1983, Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076–2078.

    PubMed  CAS  Google Scholar 

  • Ahmad, Z., DePaoli-Roach, A. A., and Roach, P. J., 1982, Purification and characterization of a rabbit liver calmodulin-dependent protein kinase able to phosphorylate glycogen synthase, J. Biol. Chem. 257:8348–8355.

    PubMed  CAS  Google Scholar 

  • Ahmad, Z., Lee, F. T., DePaoli-Roach, A., and Roach, P. J., 1984, Phosphorylation of glycogen synthase by the Ca2+and phospholipid-activated protein kinase (protein kinase C), J. Biol. Chem. 259:8743–8747.

    PubMed  CAS  Google Scholar 

  • Akhtar, R. A., and Abdel-Latif, A. A., 1984, Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenalineand ionophore A23187-stimulated accumulation of inositol phosphates, Biochem. J. 224:291–300.

    PubMed  CAS  Google Scholar 

  • Albert, P. R., and Tashjian, A. H., Jr., 1985, Dual actions of phorbol esters on cytosolic free Ca2+ concentrations and reconstitution with ionomycin of acute thyrotropin-releasing hormone responses, J. Biol. Chem. 260:8746–8759.

    PubMed  CAS  Google Scholar 

  • Althaus-Salzmann, M. Carafoli, E., and Jakob, A, 1980, Ca2+, K+ redistributions and α-adrenergic activation of glycogenosis in perfused rat livers, Eur. J. Biochem. 106:241–248.

    PubMed  CAS  Google Scholar 

  • Ambler, S. K., Brown, R. D., and Taylor, P., 1984, The relationship between phosphoinositol metabolism and mobilization of intracelluar calcium elicited by alphai-adrenergic receptor stimulation in BC3H-1 muscle cells, Mol. Pharmacol. 26:405–413.

    PubMed  CAS  Google Scholar 

  • Amitai, G., Brown, R. D., and Taylor, P., 1984, The relationship between α1-adrenergic receptor occupation and the mobilizatiron of intracellular calcium, J. Biol. Chem. 259:12519–12527.

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet, F. D., Blackmore, P. F., and Exton, J. H., 1977, Studies on α-adrenergic activatiron of hepatic glucose output: Studies on role of calcium in α-adrenergic activation of phosphorylase, J. Biol. Chem. 252:2662–2669.

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet, F. D., Blackmore, P. F., and Exton, J. H., 1982, Studies on the interaction between glucagon and α-adrenergic agonists in the control of hepatic glucose output, J. Biol. Chem. 257:3759–3765.

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet, F., McCormack, J. G., and Jeanrenaud, B., 1983, Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon, FEBS Lett. 159:83–88.

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet, F., McCormack, J. G., and Jeanrenaud, B., 1986, Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver, J. Biol. Chem. 261:8799–8804.

    PubMed  CAS  Google Scholar 

  • Aub, D. L., and Putney, J. W., Jr., 1984, Metabolism of inositol phosphates in parotid cells: Implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate, Life Sci. 34:1347–1355.

    PubMed  CAS  Google Scholar 

  • Aub, D. L., and Putney, J. W., Jr., 1985, Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells, Biochem. J. 225:263–266.

    PubMed  CAS  Google Scholar 

  • Aub, D. L., McKinney, J. S., and Putney, J. W., Jr., 1982, Nature of the receptor-regulated calcium pool in the rat parotid gland, J. Physiol. 331:557–565.

    PubMed  CAS  Google Scholar 

  • Authi, K. S., and Crawford, N., 1985, Inositol 1,4,5-trisphosphate-induced release of sequestered Ca2+ from highly purified human platelet intracellular membranes, Biochem. J. 230:247–253.

    PubMed  CAS  Google Scholar 

  • Authi, K. S., Lagarde, M., and Crawford, N., 1985, Diacylglycerol lipase activity in human platelet intracellular and surface membranes FEBS Lett. 180:95–101.

    PubMed  CAS  Google Scholar 

  • Babcock, D. F., Chen, J.-L. J., Yip, B. P., and Lardy, H. A., 1979, Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes, J. Biol. Chem. 254:8117–8120.

    PubMed  CAS  Google Scholar 

  • Balaban, R. S., and Blum, J. J., 1982, Hormone-induced changes in NADH fluorescence and 02 consumption of rat hepatocytes, Am. J. Physiol. 242:C172–C177.

    PubMed  CAS  Google Scholar 

  • Baldassare, J. J., and Fisher, G. J., 1985, Regulation of membrane associated and cytosolic phospholipase C activities in human platelets by guanosine triphosphate, J. Biol. Chem. 261:11942–11944.

    Google Scholar 

  • Ballester, R., and Rosen, O. M., 1985, Fate of immuno-precipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate, J. Biol. Chem. 260:15194–15199.

    PubMed  CAS  Google Scholar 

  • Banschbach, M. W., Geison, R. L., and Hokin-Neaverson, M., 1981, Effects of cholinergic stimulation on levels and fatty acid composition of diacylglycerols in mouse pancreas, Biochim. Biophys. Acta 663:34–45.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M., Gould, R. J., Peroutka, S. J., and Snyder, S. H., 1985a, Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle, Proc. Natl. Acad. Sci. USA 82:604–607.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M., Snyder, S. H., and Alger, B. E., 1985b, Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters, Proc. Natl. Acad. Sci. USA 82:2538–2542.

    PubMed  CAS  Google Scholar 

  • Barritt, G. J., Parker, J. C., and Wadsworth, J. C, 1981, A kinetic analysis of effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells, J. Physiol. 312:29–55.

    PubMed  CAS  Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol (1,3,4,5) tetrakisphosphate following muscarinic receptor stimulation of rat cerebral corticol slices, Biochem. J. 232:211–215.

    PubMed  CAS  Google Scholar 

  • Baudiere, B., Guillon, G., Bali, J.-P., and Jard, S., 1986, Muscarinic stimulation of inositol phosphate accumulation and acid secretion in gastric fundic mucosal cells, FEBS Lett. 198:321–325.

    PubMed  CAS  Google Scholar 

  • Baukal, A. J., Guillemette, G., Rubin, R., Spat, A., and Catt, K. J., 1985, Binding sites for inositol trisphosphate in the bovine adrenal cortex, Biochem. Biophys. Res. Commun. 133:532–538.

    PubMed  CAS  Google Scholar 

  • Beguinot, L., Hanover, J. A., Ito, S., Richert, N. D., Willingham, M. C., and Pastan, I., 1985, Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth factor receptors, Proc. Natl. Acad. Sci. USA 82:2774–2778.

    PubMed  CAS  Google Scholar 

  • Bell, J. D., Buxton, I. L. O., and Brunton, L. L., 1985, Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters, J. Biol. Chem. 260:2625–2628.

    PubMed  CAS  Google Scholar 

  • Bennett, M. K., Erondu, N. E., and Kennedy, M. B., 1983, Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258:12735–12744.

    PubMed  CAS  Google Scholar 

  • Berkowitz, S. A., and Wolff, J., 1981, Intrinsic calcium sensitivity of tubulin polymerization: The contributions of temperature, tubulin concentration, and associated proteins, J. Biol. Chem. 256:11216–11223.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1983, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212:849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P., and Irvine, R. F., 1983, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J. 212:473–482.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown, K. D., 1984, Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor, Biochem. J. 222:195–201.

    PubMed  CAS  Google Scholar 

  • Berthelson, S., and Pettinger, W. A., 1977, A functional basis for classification of ot-adrenergic receptors, Life Sci. 21:595–606.

    Google Scholar 

  • Berthon, B., Poggioli, J., Capiod, T., and Claret, M., 1981, Effect of the α-agonist noradrenaline on total and 45Ca2+ movements in mitochondria of rat liver cells, Biochem. J. 200:177–180.

    PubMed  CAS  Google Scholar 

  • Berthon, B., Binet, A., Mauger, J. P., and Claret, M., 1984, Cytosolic free Ca2 in isolated rat hepatocytes as measured by quin2, FEBS Lett. 167:19–24.

    PubMed  CAS  Google Scholar 

  • Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive Na+/H+ exchange in a human leukemic cell line, J. Cell Biol. 99:340–343.

    PubMed  CAS  Google Scholar 

  • Biden, T. J., and Wollheim, C. B., 1985, Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RlNm5F cells, J. Biol. Chem. 261:11931– 11934.

    Google Scholar 

  • Biden, T. J., Prentki, M., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells, Biochem. J. 223:467–473.

    PubMed  CAS  Google Scholar 

  • Biden, T. J., Wollheim, C. B., and Schlegel, W., 1986, Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells, J. Biol. Cehm. 261:7223–7229.

    CAS  Google Scholar 

  • Billah, M. M., and Lapetina, E. G., 1982, Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets, J. Biol. Chem. 257:12705–12708.

    PubMed  CAS  Google Scholar 

  • Billah, M. M., and Michell, R. H., 1979, Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones, Biochem. J. 182:661–668.

    PubMed  CAS  Google Scholar 

  • Binet, A., Berthon, B., and Claret, M., 1985, Hormone-induced increase in free cytosolic calcium and glycogen phosphorylase activation in rat hepatocytes incubated in normal and low-calcium media, Biochem. J. 228:565–574.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., and Exton, J. H., 1985, Mechanisms involved in the actions of calcium dependent hormones, in : Biochemical Actions of Hormones ,Vol. 12 (G. Litwak, ed.), Academic Press, New York, pp. 215–235.

    Google Scholar 

  • Blackmore, P. F., and Exton, J. H., 1985, Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate, J. Biol. Chem. 261:11056–11063.

    Google Scholar 

  • Blackmore, P. F., Brumley, F. T., Marks, J. L., and Exton, J. H., 1978, Studies on a-adrenergic activation of hepatic glucose output: Relationship between α-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells, J. Biol. Chem. 253:4851–4858.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Dehaye, J.-P., Exton, J. H., 1979, Studies on a-adrenergic activation of hepatic glucose output: The role of mitochondrial calcium release in α-adrenergic activation of phosphorylase in perfused rat liver, J. Biol. Chem. 254:6945–6950.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Hughes, B. P., Shuman, E. A., and Exton, J. H., 1982, α-adrenergic activation of phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium, J. Biol. Chem. 257:190–197.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Hughes, B. P., Charest, R., Shuman, E. A., IV, and Exton, J. H., 1983a, Time course of α1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes, J. Biol. Chem. 258:10488–10494.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Hughes, B. P., and Exton, J. H., 1983b, Time course of α-adrenergic and vasopressin effects in isolated hepatocytes, in Isolation, Characterization, and Use of Hepa tocytes (R. A. Harris and N. W. Cornell, eds.), Elsevier, New York, pp. 433–438.

    Google Scholar 

  • Blackmore, P. F., Bocckino, S. B., Waynick, L. E., and Exton, J. H., 1985, Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride, J. Biol. Chem. 260:14477–14483.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Strickland, W. G., Bocckino, S. B., and Exton, J. H., 1986, Mechanism of hepatic glycogen synthase inactivation induced by Ca2+-mobilizing hormones, Biochem. J. 237:235–242.

    PubMed  CAS  Google Scholar 

  • Blair, J. B., James, M. E., and Foster, J. L., 1979, Adrenergic control of glucose output and adenosine 3’ : 5’-monophosphate levels in hepatocytes from juvenile and adult rats, J. Biol. Chem. 254:7579–7584.

    PubMed  CAS  Google Scholar 

  • Bocckino, S. B., Blackmore, P. F., and Exton, J. H., 1985, Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II, J. Biol. Chem. 260:14201–14207.

    PubMed  CAS  Google Scholar 

  • Bojanic, D., and Fain, J. N., 1986, Guanine nucleotide regulation of [3H]vasopressin binding to liver plasma membranes and solubilized receptors. Evidence for the involvement of a guanine nucleotide regulatory protein, Biochem. J. 240:361–365.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G., 1984, Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, J. Biol. Chem. 259:3560–3567.

    PubMed  CAS  Google Scholar 

  • Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59:606–718.

    PubMed  CAS  Google Scholar 

  • Bond, M., Kitazawa, T., Somlyo, A. P., and Somlyo, A. V., 1984, Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle, J. Physiol. 355:677–695.

    PubMed  CAS  Google Scholar 

  • Boni, L. T., and Rando, R. R., 1985, The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols, J. Biol. Chem. 260:10819–10825.

    PubMed  CAS  Google Scholar 

  • Bouscarel, B., and Exton, J. H., 1986, Regulation of hepatic glycogen phosphorylase and glycogen synthase by calcium and diacylglycerol, Biochim. Biophys. Acta 888:126–134.

    PubMed  CAS  Google Scholar 

  • Boyer, J. L., Garcia, A., Posadas, C., and Garcia-Sainz, J. A., 1984, Differential effect of pertussis toxin on the affinity state for agonists of renal α1 and (α2-adrenoceptors, J. Biol. Chem. 259:8076–8079.

    PubMed  CAS  Google Scholar 

  • Brass, L. F., and Joseph, S. K., 1985, A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets, J. Biol. Chem. 260:15172–15179.

    PubMed  CAS  Google Scholar 

  • Breant, B., Keppens, S., and DeWulf, H., 1981, Desensitization of the cAMP-independent glycogenolytic response in rat hepatocytes, Arch. Int. Physiol. Biochim. 89:B90–B91.

    Google Scholar 

  • Brown, J. E., and Rubin, L. J., 1984, A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors, Biochem. Biophys. Res. Com mun. 125:1137–1142.

    CAS  Google Scholar 

  • Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, mvo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors, Nature 311:160–163.

    PubMed  CAS  Google Scholar 

  • Brown, R. D., Berger, K. D., and Taylor, P., 1984, α1-Adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line, J. Biol. Chem. 260:7554–7562.

    Google Scholar 

  • Brown, R. D., Prendiville, P., and Cann, C., 1986, α1-Adrenergic and Hl-histamine receptor control of intracellular Ca2+ in a muscle cell line: The influence of prior agonist exposure on receptor responsiveness, Mol. Pharmacol. 29:531–539.

    PubMed  CAS  Google Scholar 

  • Buckley, J. T., and Hawthorne, J. N., 1972, Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding, J. Biol. Chem. 247:7218–7223.

    PubMed  CAS  Google Scholar 

  • Burch, R. M., Luini, A., Mais, D. E., Corda, D., Vanderhoek, J. Y., Kohn, L. D., and Axelrod, J., 1986a, α1-Adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line, J. Biol. Chem. 261:11236–11241.

    PubMed  CAS  Google Scholar 

  • Burch, R. M., Luini, A., and Axelrod, J., 1986b, Phospholipase A2 and phospholipase C are activted by distinct GTP-binding proteins in resposne to α1-adrenergic stimulation in FRTL5 thyroid cells, Proc. Natl. Acad. Sci. USA 33:7201–7205.

    Google Scholar 

  • Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr., 1984a, The second messenger linking receptor activation to internal Ca release in liver, Nature 309:63–66.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, I. S., and Putney, J. W, Jr., 1984b, Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes, Biochem. J. 224:141–146.

    Google Scholar 

  • Burgess, G. M., McKinney, J. S., Irvine, R. F., Berridge, M. J., Hoyle, P. C., and Putney, J. W., Jr., 1984c, Inositol 1,4,5-trisphosphate may be a signal for f-Met-Leu-Pheinduced intracellar calcium mobilization in human leucocytes (HL-60 cells), FEBS Lett. 176: 193–196.

    PubMed  CAS  Google Scholar 

  • Burke, B. E., and Lorenzo, R. J., 1981, Ca2+and calmodulin-stimulated endogenous phosphorylation of neurotubulin, Proc. Natl. Acad. Sci. USA 78:991–995.

    PubMed  CAS  Google Scholar 

  • Busa, W. B., Ferguson, J. E., Joseph, S. K., Williamson, J. R., and Nuccitelli, R., 1985, Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. 1. Characterization of Ca2+ release from intracellular stores, J. Cell. Biol. 101:677–682.

    PubMed  CAS  Google Scholar 

  • Buxton, I. L. O., and Brunton, L. L., 1985, Action of the cardiac α1-adrenergic receptor: Activation of cyclic AMP degradation, J. Biol. Chem. 260:6733–6737.

    PubMed  CAS  Google Scholar 

  • Buxton, I. L. O., and Brunton, L. L., 1986, α-Adrenergic receptors on rat ventricular myocyte: Characteristics and linkage to cAMP metabolism, Am. J. Physiol. 251:H307–H313.

    PubMed  CAS  Google Scholar 

  • Buxton, D., Barron, L. L., and Olson, M. S., 1982, The effects of α-adrenergic agonists on the regulation of the branched chain α-ketoacid oxidation in the perfused rat liver, J. Biol. Chem. 257:14318–14323.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B., and U’Prichard, D. C, 1983, Characterization of α1 and α2-adrenergic receptors, Int. Rev. Neurobiol. 24:343–431.

    PubMed  CAS  Google Scholar 

  • Campbell, K. P., and MacLennan, D. H., 1982, A calmodulin-dependent protein kinase system from skeletal muscle sarcoplasmic reticulum: Phosphorylation of a 60,000 dalton protein, J. Biol. Chem. 257:1238–1246.

    PubMed  CAS  Google Scholar 

  • Canessa de Scarnatti, O., and Lapetina, E., 1974, Adrenergic stimulation of phosphatidylinositol labelling in rat vas deferens, Biochim. Biophys. Acta 360:298–305.

    Google Scholar 

  • Capponi, A. M., Lew, P. D., and Vallotton, M. B., 1985, Cytosolic free calcium levels in monolayers of cultured rat aortic smooth muscle cells, J. Biol. Chem. 260:7836–7842.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., 1984, Calmodulin-sensitive calcium-pumping ATPase of plasma membranes: Isolation, reconstitution, and regulation, Fed. Proc. 43:3005–3010.

    PubMed  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.

    PubMed  CAS  Google Scholar 

  • Casteels, R., and Droogmans, G., 1981, Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery, J. Physiol. 317:263–279.

    PubMed  CAS  Google Scholar 

  • Casteels, R., and Raeymaekers, L., 1979, The action of acetylcholine and catecholamines on an intracellular calcium store in smooth muscle cells of guinea-pig taenia coli, J. Physiol. 294:51–68.

    PubMed  CAS  Google Scholar 

  • Chacko, S., Conti, M. A., and Adelstein, R. S., 1977, Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation, Proc. Natl. Acad. Sci. USA 74:129–133.

    PubMed  CAS  Google Scholar 

  • Chan, K.-F., and Graves, D. J., 1984, Molecular properties of phosphorylase kinase, in: Calcium and Cell Function ,Vol. 5 (W. Y. Cheung, ed.), Academic Press, New York, pp. 1–31.

    Google Scholar 

  • Chan, T. M., and Exton, J. H., 1977, α-Adrenergic-mediated accumulation of adenosine 3’ : 5’-monophosphate in calcium-depleted hepatocytes, J. Biol. Chem. 252:8645–8651.

    PubMed  CAS  Google Scholar 

  • Chan, T. M., and Exton, J. H., 1978, Studies on α-adrenergic activatin of hepatic glucose output:Studies on α-adrenergic inhibition of hepatic pyruvate kinase and activation of gluconeogenesis, J. Biol. Chem. 253:6393–6400.

    PubMed  CAS  Google Scholar 

  • Chan, T. M., Blackmore, P. F., Steiner, K. E., and Exton, J. H., 1979, Effects of adrenalectomy on hormone action on hepatic glucose metabolism, J. Biol. Chem. 254:2428–2433.

    PubMed  CAS  Google Scholar 

  • Charest, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following α1adrenergic stimulation, J. Biol. Chem. 258:8769–8773, 1983.

    PubMed  CAS  Google Scholar 

  • Charest, R., Prpic, V., Exton, J. H., and Blackmore, P. F., 1985, Stimulation of inositol tris-phosphate formation in hepatocytes by vasopressin, epinephrine, and angiotensin II and its relationship to changes in cytosolic free Ca2, Biochem. J. 227:79–90.

    PubMed  CAS  Google Scholar 

  • Chen, J.-L. J., Babcock, D. F., and Lardy, H. A., 1978, Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolted rat hepatocytes, Proc. Natl. Acad. Sci. USA 75:2234–2238.

    PubMed  CAS  Google Scholar 

  • Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19–27.

    PubMed  CAS  Google Scholar 

  • Chueh, S.-H., and Gill, D. L., 1986, Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms, J. Biol. Chem. 261:13883–13886.

    PubMed  CAS  Google Scholar 

  • Ciapa, B., and Whitaker, M., 1986, Two phases of inositol polyphosphate and diacylglycerol production at fertilization, FEBS Lett. 195:347–351.

    PubMed  CAS  Google Scholar 

  • Clapper, D. L., and Lee, H. C, 1985, Inositol trisphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates, J. Biol. Chem. 260:13947–13954.

    PubMed  CAS  Google Scholar 

  • Cochet, C., Gill, G. N., Meisenhelder, J., Coper, J. A., and Hunter, T., 1984, C-kinase phos-phorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity, J. Biol. Chem. 259:2553–2558.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1985, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature 314:534–536.

    PubMed  CAS  Google Scholar 

  • Cohen, P., 1980, The role of calcium ions, calmodulin, and troponin in regulation of phosphorylase kinase from rabbit skeletal muscle, Eur. J. Biochem. 111:563–574.

    PubMed  CAS  Google Scholar 

  • Cohen, P., Burchell, A., Foulkes, J. G., and Cohen, P. T. W., 1978, Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS. Lett. 92:287–293.

    PubMed  CAS  Google Scholar 

  • Colucci, W. S., and Alexander, R. W., 1986, Norepinephrine-induced alteration in the coupling of α1-adrenergic receptor occupancy to calcium efflux in rabbit aortic smooth muscle cells, Proc. Natl. Acad. Sci USA 83:1743–1746.

    PubMed  CAS  Google Scholar 

  • Colucci, W. S., Gimbrone, M. A., Jr., and Alexander, R. W., 1981, Regulation of postsynaptic α-adrenergic receptor in rat mesenteric artery: Effects of chemical sympathectomy and epinephrine treatment, Circ. Res. 48:104–111.

    PubMed  CAS  Google Scholar 

  • Connolly, E., Nanberg, E., and Nedergaard, J., 1984, Na+-dependent, α-adrenergic mobilization of intracellular (mitochondrial) Ca2+ in brown adipocytes, Eur. J. Biochem. 141:187–193.

    PubMed  CAS  Google Scholar 

  • Connolly, T. M., Bross, T. E., and Majerus, P. W., 1985, Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate, J. Biol. Chem. 260:7868–7874.

    PubMed  CAS  Google Scholar 

  • Connolly, T. M., Lawing, W. J., Jr., and Majerus, P. W., 1986, Protein kinase C phosphorylates human platelet inositol trisphosphate 5′-phosphomonoesterase increasing the phosphatase activity, Cell 49:951–958.

    Google Scholar 

  • Cooper, R. H., Kobayashi, K., and Williamson, J. R., 1984, Phosphorylation of a 16-kDa protein by diacylglycerol-activated protein kinase C in vitro and by vasopressin in intact hepatocytes, FEBS Lett. 166:125–130.

    PubMed  CAS  Google Scholar 

  • Cooper, R. H., Coll, K. E., and Williamson, J. R., 1985, Differential effects of phorbol ester on phenylephrine and vasopressin-induced Ca2+ mobilization in isolated hepatocytes, J. Biol. Chem. 260:3281–3288.

    PubMed  CAS  Google Scholar 

  • Corvera, S., and Garcia-Sainz, J. A., 1984, Phorbol esters inhibit alphai adrenergic stimulation of glycogenolysis in isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 119:1128–1133.

    PubMed  CAS  Google Scholar 

  • Corvera, S., Hernandez-Sotomayor, S. M. T., and Garcia-Sainz, J. A., 1984, Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells, Biochim. Biophys. Acta 803:95–105.

    PubMed  CAS  Google Scholar 

  • Coussen, F., Haiech, J., d’Alayer, J., and Monneron, A., 1985, Identification of the catalytic subunit of brain adenylate cyclase: A calmodulin binding protein of 135kDa, Proc. Natl. Acad. Sci. USA 82:6736–6740.

    PubMed  CAS  Google Scholar 

  • Creba, J. A., Downes, C. P. K., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bis-phosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Biochem. J. 212:733–747.

    PubMed  CAS  Google Scholar 

  • Dabrowska, R., Sherry, J. M. F., Aromatorio, D. K., and Hartshorne, D. J., 1978, Modulator protein as a component of the myosin light chain kinase from chicken gizzard, Biochemistry 17:253–258.

    PubMed  CAS  Google Scholar 

  • Dale, M. M., and Penfield, A., 1984, Synergism between phorbol ester and A23187 in superoxide productin by neutrophils, FEBS. Lett. 175:170–172.

    PubMed  CAS  Google Scholar 

  • Daniel, J. L., Molish, I. R., and Holmsen, H., 1981, Myosin phosphorylation in intact platelets, J. Biol. Chem. 256:7510–7514.

    PubMed  CAS  Google Scholar 

  • Daniel, J. L., Molish, I. R., Rigmaiden, M., and Stewart, G., 1984, Evidence for a role of myosin phosphorylatin in the initiation of the placelet shape change resposne, J. Biol. Chem. 259:9826–9831.

    PubMed  CAS  Google Scholar 

  • Danthuluri, N. R., and Deth, R. C., 1984, Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response, Biochem. Biophys. Res. Commun. 125:1103–1109.

    PubMed  CAS  Google Scholar 

  • Davis, R. J., and Czech, M. P., 1984, Tumor-promoting phorbol diesters mediate phosphorylation of the epidermal growth factor receptor, J. Biol. Chem. 259:8545–8549.

    PubMed  CAS  Google Scholar 

  • Davis, B. A., Schwartz, A., Samaha, F. J., and Kranias, E. G., 1983, Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation, J. Biol. Chem. 258:13587–13591.

    PubMed  CAS  Google Scholar 

  • Davis, R. J., Ganong, B. R., Bell, R. M., and Czech, M. P., 1985, Structural requirements for diacylglycerols to mimic tumor-promoting phorbol diester action on the epidermal growth factor receptor, J. Biol. Chem. 260:5315–5322.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., 1985, GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes, FEBS Lett. 185:147–150.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., and Irvine, R. F., 1984, Inositol(l,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver, Biochem. Biophys. Res. Commun. 120:858–864.

    PubMed  CAS  Google Scholar 

  • Dehaye, J.-P., Hughes, B. P., Blackmore, P. F., and Exton, J. H., 1981, Insulin inhibition of α-adrenergic actions in liver, Biochem. J. 194:949–956.

    PubMed  CAS  Google Scholar 

  • Delbeke, D., Kojima, I., Dannies, P. S., and Rasmussen, H., 1984, Synergistic stimulation of prolactin release by phorbol ester, A23187, and forskolin, Biochem. Biophys. Res. Commun. 123:735–741.

    PubMed  CAS  Google Scholar 

  • Delfert, D. M., Hill, S., Pershadsingh, H. A., Sherman, W. R., and McDonald, J. M., 1986, myoInositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplamsic reticulum but not from plasma membranes, Biochem. J. 236:37–44.

    PubMed  CAS  Google Scholar 

  • DenHertog, A., 1981, Calcium and the α-action of catecholamines on guinea-pig taenia caeci, J. Physiol. 316:109–125.

    CAS  Google Scholar 

  • Denton, R. M., and McCormack, J. G., 1981, Calcium ions, hormones, and mitochondrial metabolism, Clin. Sci. 61:135–140.

    PubMed  CAS  Google Scholar 

  • Denton, R. M., Randle, P. J., and Martin, B. R., 1972, Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase, Biochem. J. 128:161–163.

    PubMed  CAS  Google Scholar 

  • Denton, R. M., McCormack, J. G., and Edgell, N. J., 1980, Role of calcium ions in the regulation of intramitochondrial metabolism: Effects of Na+, Mg2+, and Ruthenium Red on the Ca2+-stimulated oxidatin of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria, Biochem. J. 190:107–117.

    PubMed  CAS  Google Scholar 

  • DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengaard, P., and Kaczmarek, L. K., 1985, Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C, Nature 313:313–316.

    PubMed  CAS  Google Scholar 

  • Deth, R., and Casteels, R., 1977, A study of releasable Ca fractions in smooth muscle cells of rabbit aorta, J. Gen. Physiol. 69:401–416.

    PubMed  CAS  Google Scholar 

  • Deth, R., and van Breemen, C, 1974, Relative contributions of Ca2+ influx and cellular Ca2+ release during drug induced activation of the rabbit aorta, Pfluegers Arch. 348:13–22.

    CAS  Google Scholar 

  • DeVirgilio, F., Lew, D. P., and Pozzan, T., 1984, Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels, Nature 310: 691–693.

    Google Scholar 

  • DeWitt, L. M., and Putney, J. W., 1983, α-Adrenergic stimulation of potassium efflux in guinea pig hepatocytes may involve calcium influx and calcium release, J. Physiol. 346:395–407.

    Google Scholar 

  • Doskeland, A. P., Schworer, C. M., Doskeland, S. O., Chrisman, T. D., Soderling, T. R., Corbin, J. D., and Flatmark, T., 1984, Some aspects of phosphorylation of phenylalanine 4-monooxygenase by a calcium-dependent and calmodulin-dependent protein kinase, Eur. J. Biochem. 145:31–37.

    PubMed  CAS  Google Scholar 

  • Dougherty, R. W., Godfrey, P. P., Hoyle, P. C., Putney, J. W., Jr., and Freer, R. J., 1984, Secretagogue-induced phosphoinositide metabolism in human leucocytes, Biochem. J. 222:307–314.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., and Wusteman, M. M., 1983, Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands, Biochem. J. 216:633–640.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol triphosphate phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.

    PubMed  CAS  Google Scholar 

  • Downes, C. P., Hawkins, P. T., and Irvine, R. F., 1986, Inositol 1,3,4,5-tetrakisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland, Biochem. J. 238:501–506.

    PubMed  CAS  Google Scholar 

  • Driska, S. P., Aksoy, M. O., and Murphy, R. A., 1981, Myoson light chain phosphorylation associated with contraction in arterial smooth muscle, Am. J. Physiol. 240:C222–C233.

    PubMed  CAS  Google Scholar 

  • Drust, D. W., and Martin, T. F. J., 1985, Protein kinase C translocates from cytosol to membrane upon hormone activation: Effects of thyrotropin-releasing hormone in GH3 cells, Biochem. Biophys. Res. Commun. 128:531–537.

    PubMed  CAS  Google Scholar 

  • Ebeling, J. G., Vandenbark, G. R., Kuhn, L. J., Ganong, B. R., Bell, R. M., and Niedel, J. E., 1985, Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation, Proc. Natl. Acad. Sci. USA 82:815–819.

    PubMed  CAS  Google Scholar 

  • El-Refai, M. F., and Chan, T. M., 1986, Effects of adrenalectomy on binding to and actions of adrenergic receptors, Biochem. J. 237:527–531.

    PubMed  CAS  Google Scholar 

  • El-Refai, M. F., Blackmore, P. F., and Exton, J. H., 1979, Evidence for two α-adrenergic binding sites in liver plasma membranes. Studies with [3H]epinephrine and [3H]dihydroergocryptine, J. Biol. Chem. 254:4375–4386.

    PubMed  CAS  Google Scholar 

  • Enjalbert, A., Sladeczek, F., Guilon, G., Bertrand, P., Shu, C, Epelbaum, J., Garcia-Sainz, A., Jard, S., Lombard, C., Kordon, C., and Bockaert, J., 1986, Angiotensin II and dopamine modulate both cAMP and inositol phosphate production in anterior pituitary cells, J. Biol. Chem. 261:4071–4075.

    PubMed  CAS  Google Scholar 

  • Evans, T., Martin, M. W., Hughes, A. R., and Harden, T. K., 1985, Guanine nucleotide-sensitive, high affinity binding of carbachol to muscarinic cholinergic receptors of 1321N1 astrocytoma cells is insensitive to pertussis toxin, Mol. Pharmacol. 27:32–37.

    PubMed  CAS  Google Scholar 

  • Exton, J. H., 1980, Mechanisms involved in α-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238:E3–E12.

    PubMed  CAS  Google Scholar 

  • Exton, J. H., 1981, Molecular mechanisms involved in α-adrenergic responses, Mol. Cell. Endocrinol. 23:233–264.

    PubMed  CAS  Google Scholar 

  • Exton, J. H., 1985, Mechanisms involved in α-adrenergic phenomena, Am. J. Physiol. 248:E633–E647.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., Li, S. Y., Litosch, I., and Wallace, M., 1984, Synergistic activation of rat hepatocyte glycogen phosphorylase by A23187 and phorbol ester, Biochem. Biophys. Res. Commun. 119:88–94.

    PubMed  CAS  Google Scholar 

  • Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.

    PubMed  CAS  Google Scholar 

  • Fisher, M. J., and Pogson, C. I., 1984, Phenylalanine hydroxylase in liver cells: Correlation of glucagon-stimulated enzyme phosphorylation with expressed activity, Biochem. J. 219:79–85.

    PubMed  CAS  Google Scholar 

  • Fisher, M. J., Santana, M. A., and Pogson, C. I., 1984, Effects of adrenergic agents, vasopressin, and ionophore A23187, on the phosphorylation of, and flux through, phenylalanine hydroxylase in rat liver cells, Biochem. J. 219:87–90.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A., Tanabe, S., Buxton, D. B., and Olson, M. S., 1985, The effects of α-adrenergic stimulation on the regulation of the pyruvate dehydrogenase complex in the perfused rat liver, J. Biol. Chem. 260:9223–9229.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, T. J., Uhing, R. J., and Exton, J. H., 1986, Solubilization of the vasopressin receptor from liver plasma membranes. Evidence for a receptor-GTP-binding protein complex, J. Biol. Chem. 261:16871–16877.

    PubMed  CAS  Google Scholar 

  • Gallo-Payet, N., Guillon, G., Balestre, M. N., and Jard, S., 1986, Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells, Endocrinology 119:1042–1047.

    PubMed  CAS  Google Scholar 

  • Ganong, B. R., Loomis, C. R., Hannun, Y. A., and Bell, R. M., 1986, Specific and mechanism of protein kinase C activation by sn-1 ,2-diacylglycerols, Proc. Natl. Acad. Sci. USA 83:1184–1188.

    PubMed  CAS  Google Scholar 

  • Garcia-Sainz, J. A., and Fain, J. N., 1980, Effect of adrenergic amines on phosphatidylinositol labeling and glycogen synthase activity in fat cells from euthyroid and hypothyroid rats, Mol. Pharmacol. 28:72–77.

    Google Scholar 

  • Garcia-Sainz, J. A., and Hernandez-Sotomayor, S. M. T., 1985, Adrenergic regulation of gluconeogenesis: Possible involvement of two mechanisms of signal transduction in α1-adrenergic action, Proc. Natl. Acad. Sci. USA 82:6727–6730.

    PubMed  CAS  Google Scholar 

  • Garcia-Sainz, J. A., Litosch, I., Hoffman, B. B., Lefkowitz, R. J., and Fain, J. N., 1981, Effect of thyroid status on a-and (β-catecholamine responsiveness of hamster adipocytes, Biochim. Biophys. Acta 678:334–341.

    PubMed  CAS  Google Scholar 

  • Garrison, J. C, and Wagner, J. D., 1982, Glucagon and the Ca2+-linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes, J. Biol. Chem. 257:13135–13143.

    PubMed  CAS  Google Scholar 

  • Garrison, J. C, Borland, M. K., Florio, V. A., and Twible, D. A., 1979, The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes, J. Biol. Chem. 254:7147–7156.

    PubMed  CAS  Google Scholar 

  • Garrison, J. C, Johnsen, D. E., and Campanile, C. P., 1984, Evidence for the role of phosphorylase kinase, protein kinase C, and other Ca2+-sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin, J. Biol. Chem. 259:3283–3292.

    PubMed  CAS  Google Scholar 

  • Gershengorn, M. C., Geras, E., Purrello, V. S., and Rebecchi, M. J., 1984, Inositol trisphosphate mediates thyrotropin-releasing hormone mobilization of non-mitochondrial calcium in rat mammotropic pituitary cells, J. Biol. Chem. 259:10675–10681.

    PubMed  CAS  Google Scholar 

  • Geynet, P., Borsodi, A., Ferry, N., and Hanoune, J., 1980, Proteolysis of rat liver plasma membranes cancels the guanine nucleotide sensitivity of agonist binding to the alpha-receptor, Biochem. Biophys. Res. Commun. 97:947–954.

    PubMed  CAS  Google Scholar 

  • Gomperts, B. D., 1983, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors, Nature 306:64–66.

    PubMed  CAS  Google Scholar 

  • Gonzatti-Haces, M. I., and Trauch, J. A., 1986, Ca2+-independent activation of protease-activated kinase II by phospholipids/diolein and comparison with the Ca2+/phospholipid-dependent protein kinase, J. Biol. Chem. 261:15266–15272.

    PubMed  CAS  Google Scholar 

  • Goodhardt, M., Ferry, N., Geynet, P., and Hanoune, J., 1982, Hepatic α1-adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy, J. Biol. Chem. 257:11577–11583.

    PubMed  CAS  Google Scholar 

  • Graham, R. M., Hess, H.-J., and Homcy, C. J., 1982, Biophysical characterization of the purified α1-adrenergic receptor and identification of the hormone binding subunit, J. Biol. Chem. 257:15174–15181.

    PubMed  CAS  Google Scholar 

  • Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311:433–438.

    PubMed  CAS  Google Scholar 

  • Griendling, K. K., Rittenhouse, S. E., Brock, T. A., Ekstein, L. S., Gimbrone, M. A., Jr., and Alexander, R. W., 1986, Sustained diacylglycerol formation from inositol phospholipids in angiotension II-stimulated vascular smooth muscle cells, J. Biol. Chem. 261: 5901–5906.

    PubMed  CAS  Google Scholar 

  • Grunberger, G., and Gorden, P., 1982, Affinity alteration of insulin receptor induced by a phorbol ester, Am. J. Physiol. 243:E319–E324.

    PubMed  CAS  Google Scholar 

  • Guellaen, G., Yates-Aggerbeck, M., Vauquelin, G., Strosberg, D., and Hanoune, J., 1978, Characterization with [3H]dihydroergocryptine of the α-adrenergic receptor of the hepatic plasma membrane, J. Biol. Chem. 253:1114–1120.

    PubMed  CAS  Google Scholar 

  • Guellaen, G., Goodhardt, M., Barouki, R., and Hanoune, J., 1982, Subunit structure of rat liver α1-adrenergic receptor, Biochem. Pharmacol. 31:2817–2820.

    PubMed  CAS  Google Scholar 

  • Guillon, G., Balestre, M.-N., Mouillac, B., and Devilliers, G., 1986, Activation of membrane phospholipase C by vasopressin. A requirement for guanyl nucleotides, FEBS Lett. 196:155–159.

    PubMed  CAS  Google Scholar 

  • Haddas, R. A., Landis, C. A., and Putney, J. W., Jr., 1979, Relationship between calcium release and potassium release in rat parotid gland, J. Physiol. 291:457_465.

    PubMed  Google Scholar 

  • Hannun, Y. A., and Bell, R. M., 1986, Phorbol ester binding and activation of protein kinase C on Triton X-100 mixed micelles containing phosphatidylserine, J. Biol. Chem. 261: 9341–9347.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., Loomis, C. R., and Bell, R. M., 1985, Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine, J. Biol. Chem. 260:10039–10043.

    PubMed  CAS  Google Scholar 

  • Hannun, Y. A., Loomis, C. R., and Bell, R. M., 1986, Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies, J. Biol. Chem. 261:7184–7190.

    PubMed  CAS  Google Scholar 

  • Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261:8100–8103.

    PubMed  Google Scholar 

  • Hansford, R. G., 1981, Effect of micromolar concentrations of free Ca2+ ions on pyruvate dehydrogenase interconversion in intact rat heart mitochondria, Biochem. J. 194:721–732.

    PubMed  CAS  Google Scholar 

  • Hansford, R. G., 1985, Relation between mitochondrial calcium transport and control of energy metabolism, Rev. Physiol. Biochem. Pharmacol. 102:1–72.

    PubMed  CAS  Google Scholar 

  • Hansford, R. G., and Castro, F., 1981, Effect of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate, Biochem. J. 198:525–533.

    PubMed  CAS  Google Scholar 

  • Harrington, C. A., and Eichberg, J., 1983, Norepinephrine causes α1adrenergic receptor-mediated decrease of phosphoinositide in isolated rat liver plasma membranes supplemented with cytosol, J. Biol. Chem. 258:2087–2090.

    PubMed  CAS  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984a, Potentiation by thrombin of the platelets equilibrated with Ca2+ buffers. Relationship to protein phosphorylation and diacylglycerol formation, Biochem J. 222:351–361.

    PubMed  CAS  Google Scholar 

  • Haslam R. J., and Davidson, M. M. L., 1984b, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP-binding protein in platelet activation, FEBS Lett. 174:90–95.

    PubMed  CAS  Google Scholar 

  • Haslam, R. J., and Davidson, M. M. L., 1984c, Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein, J. Receptor Res. 4:605–629.

    CAS  Google Scholar 

  • Haussinger, D., and Sies, H., 1984, Effect of phenylephrine on glutamate and glutamine metaboilsm in isolated perfused rat liver, Biochem. J. 221:651–658.

    PubMed  CAS  Google Scholar 

  • Haylett, D. G., 1976, Effects of sympathomimetic amines on 45Ca efflux from liver slices, Brit. J. Pharmacol. 57:158–160.

    CAS  Google Scholar 

  • Hems, D. A., McCormack, J. G., and Denton, R. M., 1978, Activation of pyruvate dehydrogenase in the purified rat liver by vasopressin, Biochem. J. 176:627–629.

    PubMed  CAS  Google Scholar 

  • Henne, V., and Soling, H.-D., 1986, Guanosine 5’-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate, FEBS Lett. 202:267–273.

    PubMed  CAS  Google Scholar 

  • Hepler, J. R., and Harden, T. K., 1986, Guanine nucleotide-dependent pertussis toxin-insensitive stimulation of inositol phosphate formation by carbachol in a membrane preparation from human astrocytoma cells, Biochem. J. 239:141–146.

    PubMed  CAS  Google Scholar 

  • Hernandez-Sotomayor, S. M. T., and Garcia-Sainz, J. A., 1984, Adrenergic regulation of ureo-genesis in hepatocytes from adrenalectomized rats, FEBS Lett. 166:385–388.

    PubMed  CAS  Google Scholar 

  • Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C., 1983, Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes, J. Biol. Chem. 258:4876–4882.

    PubMed  CAS  Google Scholar 

  • Higashida, H., Streaty, R. A., Klee, W., and Nirenberg, M., 1986, Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108–15 neuroblastoma glioma hybrid cells, Proc. Natl. Acad. Sci. USA 83:942–946.

    PubMed  CAS  Google Scholar 

  • Hinkle, P. M., and Phillips, W. J., 1984, Thyrotropin-releasing hormone stimulates GTP hydrolysis by membranes from GH4Ci rat pituitary tumor cells, Proc. Natl. Acad. Sci. USA 81:6183–6187.

    PubMed  CAS  Google Scholar 

  • Hirata, M., Kukita, M., Sasaguri, T., Suematsu, E., Hashimoto, T., and Koga, T., 1985, Increase in Ca2+ permeabilization of intracellular Ca2+ store membrane of saponin-treated guinea pig peritoneal macrophages by inositol 1,4,5-trisphosphate, J. Biochem. 97:1575–1582.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B.,Mullikin-Kilpatrick, D., and Lefkowitz, R. J., 1980, Heterogeneity of radioligand binding to α-adrenergic receptors, J. Biol. Chem. 255:4645–4652.

    PubMed  CAS  Google Scholar 

  • Hollingsworth, E. B., and Daly, J. W., 1985, Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine, and 2-chloroadenosine, Biochim. Biophys. Acta 847:207–216.

    PubMed  CAS  Google Scholar 

  • Hollingsworth, E. B., Sears, E. B., and Daly, J. W., 1985, An activator of protein kinase C (phorbol-12-myristate-13-acetate) augments 2-chloroadenosine-elicited accumulation of cyclic AMP in guinea pig cerebral cortical particulate preparations, FEBS Lett. 184:339–342.

    PubMed  CAS  Google Scholar 

  • Holub, B. J., andKuksis, A., 1978, Metabolism of molecular species of diacylglycerophospholipids, Adv. Lipid Res. 16:1–125.

    PubMed  CAS  Google Scholar 

  • Huerta-Bahena, J., and Garcia-Sainz, J. A., 1983, Inositol administration restores the sensitivity of liver cells formed during liver regeneration to alpha1-adrenergic amines, vasopressin, and angiotensin II, Biochim. Biophys. Acta 763:125–128.

    PubMed  CAS  Google Scholar 

  • Huerta-Bahena, J., and Garcia-Sainz, J. A., 1984, Effect of inositol and tri-iodothyronine on the hormonal responsiveness of hepatocytesobtained from partially hepatectomized rats, Biochem. J. 223:925–928.

    PubMed  CAS  Google Scholar 

  • Huerta-Bahena, J., Vallalobos-Molina, R., and Garcia-Sainz, J. A., 1983, Roles of alpha1 and beta-adrenergic receptors in adrenergic responsiveness of liver cells formed after partial hep-atectomy, Biochim. Biophys. Acta 763:112–119.

    PubMed  CAS  Google Scholar 

  • Hughes, A. R., Martin, M. W., and Harden, T. K., 1984, Pertussis toxin differentiates between two mechanisms of attenuation of cyclic AMP accumulation by muscarinic cholinergic receptors, Proc. Natl. Acad. Sci. USA 81:5680–5684.

    PubMed  CAS  Google Scholar 

  • Hughes, B. P., Rye, K.-A., Pickford, L. B., Barritt, G. J., and Chalmers, A. H., 1984, A transient increase in diacylglycerols is associated with the action of vasopressin on hepatocytes, Biochem. J. 222:535–540.

    PubMed  CAS  Google Scholar 

  • Hutson, N. J., Brumley, F. T., Assimacopoulos, F. D., Harper, S. C, and Exton, J. H., 1976, Studies on the α-adrenergic activation of hepatic glucose output, J. Biol. Chem. 251:5200–5208.

    PubMed  CAS  Google Scholar 

  • Hutton, J. C., Peshavaria, M., and Brocklehurst, K. W., 1984, Phorbol ester stimulation of insulin release and secretory-granule protein phosphorylation in a transplantable rat insulinoma, Biochem. J. 224:483–490.

    PubMed  CAS  Google Scholar 

  • Ikebe, M., Inagaki, M., Kanamuaru, K., and Hidaka, H., 1985, Phosphorylation of smooth muscle myosin light chain kinase by Ca2+-activted, phospholipid-dependent protein kinase, J. Biol. Chem. 260:4547–4550.

    PubMed  CAS  Google Scholar 

  • Imazu, M., Strickland, W. G., Chrisman, T. D., and Exton, J. H., 1984, Phosphorylation and inactivation of liver glycogen synthase by liver protein kinases, J. Biol. Chem. 259:1813–1821.

    PubMed  CAS  Google Scholar 

  • Imboden, J. B., and Stobo, J. D., 1985, Transmembrane signalling by the T cell antigen receptor, J. Exper. Med. 161:446–456.

    CAS  Google Scholar 

  • Irvine, R. F., and Moor, R. M., 1986, Microinjection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent upon external Ca2+, Biochem. J. 240:917–920.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Brown, K. D., and Berridge, M. J., 1984a, Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells, Biochem. J. 221:269–272.

    Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., 1984b, Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands, Biochem. J. 229:505–511.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986a, The inositol tris/tetrakisphosphate pathway-Demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues, Nature 320:631–634.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J., 1986b, Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells, Biochem. J. 240:301–304.

    PubMed  CAS  Google Scholar 

  • Irving, H. R., and Exton, J. H., 1987, Phosphatidylcholine breakdown in rat liver plasma membranes: roles of guanine nucleotides and P2-purinergic agonists, J. Biol. Chem. 262:3440–3443.

    PubMed  CAS  Google Scholar 

  • Ishii, H., Connolly, T. M., Bross, T. E., and Majerus, P. W., 1986, Inositol cyclic trisphosphate [inositol 1,2-(cyclic)-4,5-trisphosphate] is formed upon thrombin stimulation of human platelets, Proc. Natl. Acad. Sci. USA 83:6397–6401.

    PubMed  CAS  Google Scholar 

  • Itoh, H., Okajima, F., and Ui, M., 1984, Conversion of adrenergic mechanism from an a-to a β-type during primary culture of rat hepatocytes, J. Biol. Chem. 259:15464–15473.

    PubMed  CAS  Google Scholar 

  • Jacobs, S., Sahyoun, N. E., Saltiel, A. R., and Cuatrecasas, P., 1983,Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C, Proc. Natl. Acad. Sci. USA 80:6211–6213.

    PubMed  CAS  Google Scholar 

  • Jakob, A., and Diem, S., 1975, Metabolic responses of perfused rat livers to alpha-and betaadrenergic agonists, glucagon, and cyclic AMP, Biochim. Biophys. Acta 404:57–66.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Bauer, S., and Watanabe, Y., 1985, Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway, Eur. J. Biochem. 151:425–430.

    PubMed  CAS  Google Scholar 

  • Jean, T., and Klee, C. B., 1986, Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (NG108-15) microsomes, J. Biol. Chem. 261:16414–16420.

    PubMed  CAS  Google Scholar 

  • Jenkinson, D. H., Haylett, D. G., Koller, K., and Burgess, G., 1978, Classification and actions of liver cell adrenoceptors, in: Recent Advances in the Pharamcology of Adrenoceptors (E. Szabadi, ed.), Elsevier/North-Holland, pp. 23–33.

    Google Scholar 

  • Jones, D. J., and McKenna, L. F., 1980, Alpha-adrenergic receptor mediated formation of cyclic AMP in rat spinal cord, J. Cyclic Nucleotide Res. 6:133–141.

    PubMed  CAS  Google Scholar 

  • Jones, L. M, and Michell, R. H., 1978, Stimulus-response coupling at α-adrenergic receptors, Biochem. Soc. Trans. 6:673–688.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williams, R. J., 1985, Subcellular localization and some properties of the enzymes hydrolysing inositol polyphosphates in rat liver, FEBS Lett. 180:150–154.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williamson, J. R., 1983, The origin, quantitation, and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes, J. Biol. Chem. 258:10425–10432.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williamson, J. R., 1986, Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes, J. Biol. Chem. 261:14658–14664.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984a, myo inositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Williamson, R. J., Corkey, B. E., Matschinsky, F. M., and Williamson, J. R., 1984b, The efect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells, J. Biol. Chem. 259:12952–12955.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Coll, K. E., Thomas, A. P., Rubin, R., and Williamson, J. R., 1985, The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones, J. Biol. Chem. 260:12508–12515.

    PubMed  CAS  Google Scholar 

  • Juhl, H., Sherorain, V. S., Schworer, C. M., Jett, M. F., andSoderling, T. R., 1983, Phosphorylatin site specificites of glycogen synthase kinases: Determination by peptide mapping using high performance liquid chromatography, Arch. Biochem. Biophys. 222:518–526.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1981, Cooperative roles of various membrane phospholipids in the activation of calcium-activated, phospholipid-dependent protein kinase, J. Biol. Chem. 256:7146–7149.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Tsuda, T., Kikuchi, A., Tanimoto, T., Yamashita, T., and Takai, Y., 1986, Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts, J. Biol. Chem. 261:1187–1192.

    PubMed  CAS  Google Scholar 

  • Kamagai, H., and Nishida, E., 1979, The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins, J. Biochem. (Tokyo) 85:1267–1274.

    Google Scholar 

  • Kanaho, Y., Moss, J., and Vaughan, M., 1985, Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum, J. Biol. Chem. 260:11493–11497.

    PubMed  CAS  Google Scholar 

  • Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G., 1984, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein, J. Biol. Chem. 259:3568–3577.

    PubMed  CAS  Google Scholar 

  • Katada, T., Gilman, A. G., Watanabe, Y., Buer, S., and Jakobs, K. H., 1985, Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase, Eur. J. Biochem. 151:431–437.

    PubMed  CAS  Google Scholar 

  • Katakami, Y., Kaibuchi, K., Sawamura, M., Takai, Y., and Nishizuka, Y., 1984, Synergistic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells, Biochem. Biophys. Res. Commun. 121:573–578.

    PubMed  CAS  Google Scholar 

  • Kawahara, Y., Takai, Y., Minakuchi, R., Sano, K., and Nishizuka, Y., 1980, Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin, Biochem. Biophys. Res. Commun. 97:309–317.

    PubMed  CAS  Google Scholar 

  • Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the cmyc gene by lymphocyte mitogens and platelet derived growth factor, Cell 35:603–610.

    PubMed  CAS  Google Scholar 

  • Kennedy, M. B., and Greengard, P., 1981, Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites, Proc. Natl. Acad. Sci. USA 78:1293–1297.

    CAS  Google Scholar 

  • Kessar, P., and Crompton, M., 1981, The α-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria, Biochem. J. 200:379–388.

    PubMed  CAS  Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257:13341–13348.

    PubMed  CAS  Google Scholar 

  • Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 258:11442–11445.

    PubMed  CAS  Google Scholar 

  • Kimura, S., Kugai, N., Tada, R., Kojima, I., Abe, K., and Ogata, E., 1982, Sources of calcium mobilized by α-adrenergic stimulation in perfused rat liver, Horm. Metab. Res. 14:133–138.

    PubMed  CAS  Google Scholar 

  • Kimura, S., Nagasaki, K., Adachi, I., Yamaguchi, K., Fujiki, H., and Abe, K., 1984, Stimulation of hepatic glycogenosis by 12-0-tetradecanoylphorbol-13-acetate (TPA) via a calcium requiring process, Biochem. Biophys. Res. Commun. 122:1057–1064.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Verrinder, T. R., and Hems, D. A., 1977, Rapid stimulation, by vasopressin and adrenaline, or inorganic phosphate incorporation into phosphatidylinositol in isolated hepatocytes, FEBS Lett. 83:267–271.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Creba, J. A., Downes, C. P., and Michell, R. H., 1981, Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function, Biochem. Soc. Trans. 9:377–379.

    PubMed  CAS  Google Scholar 

  • Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273–2276.

    PubMed  CAS  Google Scholar 

  • Klee, C. B., and Vanaman, T. C., 1982, Calmodulin, Adv. Protein Chem. 35:213–321.

    PubMed  CAS  Google Scholar 

  • Kleineke, J., and Soling, H. D., 1985, Mitochondrail and extramitochondrial Ca2+ pools in the perfused rat liver: Mitochondria are not the origin of calcium mobilized by vasopressin, J. Biol. Chem. 260:1040–1045.

    PubMed  CAS  Google Scholar 

  • Korchak, H. M., Rutherford, L. E., and Weissman, G., 1984, Stimulus response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability, J. Biol. Chem. 259:4070–4075.

    PubMed  CAS  Google Scholar 

  • Kraft, A. S., and Anderson, W. B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature 301:621–623.

    PubMed  CAS  Google Scholar 

  • Kraft, A. S., Anderson, W. B., Cooper, H. L., and Sando, J. J., 1982, Decrease in cytosolic calcium/phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells, J. Biol. Chem. 257:13193–13196.

    PubMed  CAS  Google Scholar 

  • Kruijer, W., Cooper, J. A., Hunter, T., and Verma, I. M., 1984, Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein, Nature 312:711–716.

    PubMed  CAS  Google Scholar 

  • Kunos, G., Kan, W. H., Greguski, R., and Venter, J. C, 1983, Selective affinity labeling and molecular characterization of hepatic α1-adrenergic receptors with [3H]phenoxybenzamine, J. Biol. Chem. 258:326–332.

    PubMed  CAS  Google Scholar 

  • Kunos, G., Hirata, F., Ishac, E. J. N., and Tchakarov, L., 1984, Time-dependent conversion of α1 to (β-adrenoceptor-mediated glycogenosis in isolated rat liver cells: Role of membrane phospholipase A2, Proc. Natl. Acad. Sci. USA 81:6178–6182.

    PubMed  CAS  Google Scholar 

  • Kuo, J. F., Andersson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, I., Brackett, N. L., Katoh, N., Shoji, M., and Wrenn, R. W., 1980, Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine, Proc. Natl. Acad. Sci. USA 77:1039–1043.

    Google Scholar 

  • Kuret, J., and Schulman, H., 1984, Purification and characterization of a Ca2+ /calmodulin-dependent protein kinase from rat brain, Biochemistry 23:5495–5504.

    PubMed  CAS  Google Scholar 

  • Kuret, J., and Schulman, H., 1985, Mechanism of autophosphorylation of the multifunctional Ca2+ calmodulin-dependent protein kinase, J. Biol. Chem. 260:6427–6433.

    PubMed  CAS  Google Scholar 

  • Labarca, R., Janowsky, A., Patel, J., and Paul, S. M., 1984, Phorbol esters inhibit agonist-induced [3H]inositol-l-phosphate accumulation in rat hippocampal slices, Biochem. Biophys. Res. Com mun. 123:703–709.

    CAS  Google Scholar 

  • Lad, P. M., Olson, C. V., and Smiley, P. A., 1985, Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin, Proc. Natl. Acad. Sci. USA 82:869–873.

    PubMed  CAS  Google Scholar 

  • Landt, M., and McDonald, J. M., 1984, Characterization of calmodulin-activated protein kinase activity of rat adipocyte endoplasmic reticulum fraction, Int. J. Biochem. 16:161–169.

    PubMed  CAS  Google Scholar 

  • Landt, M., McDaniel, M. L., Bry, C. G., Kotagal, N., Colca, J. R., Lacy, P. E., and McDonald, J. M., 1982, Calmodulin-activated protein kinase activity in rat pancreatic islet cell membranes, Arch. Biochem. Biophys. 213:148–154.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z., 1974, Presynaptic regulation of catecholamine release (Commentary), Biochem. Pharmacol. 23:1793–1800.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z., 1977, Presynaptic receptors and their role in the regulation of transmitter release, Br. J. Pharmacol. 60:481–497.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., Reep, B., Ganong, B. R., and Bell, R. M., 1985, Exogenous sn-l,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets, J. Biol. Chem. 260:1358–1361.

    PubMed  CAS  Google Scholar 

  • Lee, L. S., and Weinstein, I. B., 1978, Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors, Science 202:313–315.

    PubMed  CAS  Google Scholar 

  • Lee, L. S., and Weinstein, I. B., 1979, Mechanism of tumor promoter inhibition of cellular binding of epidermal growth factor, Proc. Natl. Acad. Sci. USA 76:5168–5172.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg, L. M. F., Dickinson, K. E. J., Heald, S. L., Wikberg, J. E. S., Lefkowitz, R. J., and Caron, M. G., 1984, Photoaffinity labeling of mammalian α1-adrenergic receptors, J. Biol. Chem. 259:2579–2587.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., Debernadis, J. F., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol esters promote α1adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. USA 82:5651– 5655.

    PubMed  CAS  Google Scholar 

  • LePeuch, C. J., Haiech, J., and Demaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cAMP dependent and calcium-calmodulin-dependent phosphorylation, Biochemistry 18:5150–5157.

    CAS  Google Scholar 

  • Lew, P. D., Monod, A., Krause, K.-H., Waldvogel, F. A., Biden, T. J., and Schlegel, W., 1986, The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells, J. Biol. Chem. 261:13121–13127.

    PubMed  CAS  Google Scholar 

  • Lin, S. H., and Fain, J. N., 1981, Vasopressin and epinephrine stimulation of phosphatidylinositol breakdown in the plasma membrane of rat hepatocytes, Life Sci. 29:1905–1912.

    PubMed  CAS  Google Scholar 

  • Lin, S. H., Wallace, M. A., and Fain, J. N., 1983, Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine, Endocrinology 113:2268–2275.

    PubMed  CAS  Google Scholar 

  • Litosch, I., Lin, S. H., and Fain, J. N., 1983, Rapid changes in hepatocyte phosphoinositides induced by vasopressin, J. Biol. Chem. 258:13727–13732.

    PubMed  CAS  Google Scholar 

  • Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands, J. Biol. Chem. 260:5464–5471.

    PubMed  CAS  Google Scholar 

  • Lomasney, J. W., Leeb-Lundberg, L. M. F., Cotecchia, S., Regan, J. W., DeBernadis, J. F., Caron, M. G., and Lefkowitz, R. J., 1986, Mammalian α1-adrenergic receptor. Purification and characterization of the native receptor ligand binding subunit, J. Biol. Chem. 261:7710–7716.

    PubMed  CAS  Google Scholar 

  • Lucas, D. O., Bajjalich, S. M., Kowalchyk, J. A., and Martin, T. F. J., 1985, Direct stimulation by thyrotropin-releasing hormone of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism, Biochem. Biophys. Res. Commun. 132:721–728.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., Blackmore, P. F., Charest, R., and Exton, J. H., 1985a, The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver, Mol. Phar macol. 28:93–99.

    CAS  Google Scholar 

  • Lynch, C. J., Charest, R., Blackmore, P. F., and Exton, J. H., 1986b, Studies on the hepatic α1 adrenergic receptor. Modulation of guanine nucleotide effects by calcium temperature and age, J. Biol. Chem. 260:1593–1600.

    Google Scholar 

  • Lynch, C. J., Chraest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F., 1985c, Inhibition of hepatic α1-adrenergic effects and binding by phorbol myristate acetate, J. Biol. Chem. 260:2844–2851.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., Sobo, G. E., and Exton, J. H., 1986a, Studies on the hepatic α1adrenergic receptor. An endogenous Ca2+-sensitive protease converts the α1-adrenergic receptor to a guanine nucleotide insensitive form, Biochim. Biophys. Acta 885:110–120.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., Prpic, V., Blackmore, P. F.,and Exton, J. H., 1986b, Effect of islet activating pertussis toxin on the binding characteristics of Ca2+-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes, Mol. Pharmacol. 29:196–203.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., Wilson, P. B., Blackmore, P. F., and Exton, J. H., 1986c, The hormone-sensitive hepatic Na+ pump. Evidence for regulation by diacylglycerol and tumor promotors, J. Biol. Chem. 261:14551–14556.

    PubMed  CAS  Google Scholar 

  • Maclntyre, D. E., McNicol, A., and Drummond, A. H., 1985, Tumour-promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca2+ flux in human platelets, FEBS Lett. 180:160–164.

    Google Scholar 

  • Malaisse, W. J., Dunlop, M. E., Mathias, P. C. F., Malaisse-Lagae, F., and Sener, A., 1985, Stimulation of protein kinase C and insulin release by l-oleoyl-2-acetyl-glycerol, Eur. J. Biochem. 149:23–27.

    PubMed  CAS  Google Scholar 

  • Malbon, C. C., 1980, Liver cell adenylate cyclase and β-adrenergic receptors, J. Biol. Chem. 255:8692–8699.

    PubMed  CAS  Google Scholar 

  • Malbon, C. C., and Lo Presti, J. J., 1981, Hyperthyroidism impairs the activation of glycogen phosphorylase by epinephrine in rat hepatocytes, J. Biol. Chem. 256:12199–12204.

    PubMed  CAS  Google Scholar 

  • Malbon, C. C., Li, S. Y., and Fain, J. N., 1978, Hormonal activation of glycogen phosphorylase in hepatocytes from hypothyroid rats, J. Biol. Chem. 253:8820–8825.

    PubMed  CAS  Google Scholar 

  • Malbon, C. C., Graziano, M. P., and Johnson, G. L., 1984, Fat cell β-adrenergic receptor in the hypothyroid rat, J. Biol. Chem. 259:3254–3260.

    PubMed  CAS  Google Scholar 

  • Manning, D. R., Fraser, B. A., Kahn, R. A., and Gilman, A. G., 1984, ADP-ribosylation of transducin by islet-activating protein. Identification of asparagine as the site of ADP-ribosylation, J. Biol. Chem. 259:749–756.

    PubMed  CAS  Google Scholar 

  • Marcum, J. M., Dedman J. R., Brinkley, B. R., and Means, A. R., 1978, Control of microtubule assembly-disassembly by calcium-dependent regulator protein, Proc. Natl. Acad. Sci. USA 75:3771–3775.

    PubMed  CAS  Google Scholar 

  • Marier, S. H., Putney, J. W., Jr., and Van De Walle, C. M., 1978, Control of calcium channels by membranen receptors in rat parotid gland, J. Physiol. 279:141–151.

    PubMed  CAS  Google Scholar 

  • Martin, M. W., Evans, T., and Harden, T. K., 1985, Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not Ni, Biochem. J. 229:539–544.

    PubMed  CAS  Google Scholar 

  • Martin, T. F. J., 1983, Thyrotropin-releasing hormone rapidly activates the phosphodiesterase hydrolysis of polyphosphoinositides in GH3 pituitary cells, J. Biol. Chem. 258:14816–14822.

    PubMed  CAS  Google Scholar 

  • Martin, T. F. J., Bajjalieh, S. M., Lucas, D. O., and Kowalchyk, J. A., 1986, Thyrotropinreleasing hormone stimulation of polyphosphoinositide hydrolysis in GH3 cell membranes is GTP-dependent but insensitive to cholera or pertussis toxin, J. Biol. Chem. 261: 10041–10049.

    Google Scholar 

  • Masters, S. B., Harden, T. K., and Brown, J. H., 1984, Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells, Mol. Pharmacol. 26:149–155.

    PubMed  CAS  Google Scholar 

  • Masters, S. B., Martin, M. W., Harden, T. K., and Brown, J. H., 1985a, Pertussis toxin does not inhibit muscarinic receptor-mediated phosphoinositide hydrolysis or calcium mobilization, Biochem. J. 227:933–937.

    PubMed  CAS  Google Scholar 

  • Masters, S. B., Quinn, M. T., and Brown, J. H., 1985b, Agonist induced desenitization of muscarinic receptor-mediated calcium efflux without concomitant desensitization of phosphoinositide hydrolysis, Mol. Pharmacol. 27:325–332.

    PubMed  CAS  Google Scholar 

  • Matozaki, T., Sakamoto, C., Nagao, M., and Baba, S., 1986, Phorbol ester or diacylglycerol modulates somatostatin binding to its receptors on rat pancreatic acinar cell membranes, J. Biol. Chem. 261:1414–1420.

    PubMed  CAS  Google Scholar 

  • Mauco, G., Chap, H., and Douste-Blazy, L., 1983, Platelet activating factor (PAF-acether) promotes an early degradation of phosphatidylinositol-4,5-bisphosphate in rabbit platelets, FEBS Lett. 153:361–365.

    PubMed  CAS  Google Scholar 

  • Mauco, G., Fauvel, J., Chap, H., and Douste-Blazy, L., 1984, Studies on enzymes related to diacylglycerol production in activated platelets, Biochim. Biophys. Acta 796:169–177.

    PubMed  CAS  Google Scholar 

  • Mauger, J. P., Poggioli, J., Guesdon, F., and Claret, M., 1984, Noradrenaline, vasopressin, and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells, Biochem. J. 221:121–127.

    PubMed  CAS  Google Scholar 

  • Mauger, J. P., Poggioli, J., and Claret, M., 1985, Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II, J. Biol. Chem. 260:11635–11642.

    PubMed  CAS  Google Scholar 

  • May, W. S., Jacobs, S., and Cuatrecasas, P., 1984, Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells, Proc. Natl. Acad. Sci. USA 81:2016–2020.

    PubMed  CAS  Google Scholar 

  • May, W. S., Jr., Sahoyn, N., Wolf, M., and Cuatrecasas, P., 1985, Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes, Nature 317:549–551.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., 1985a, Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria, Biochem. J. 231:581–595.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., 1985b, Studies on the activation of rat liver pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase by adrenaline and glucagon, Biochem. J. 231:597–608.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., 1985c, Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+]i, FEBS Lett. 180:259–264.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., and Denton, R. M., 1981a, Comparative study of regulation by Ca2+ of activities of 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources, Biochem. J. 196:619–624.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., and Denton, R. M., 1981b, The activation of pyruvate dehydrogenase in perfused rat heart by adrenaline and other inotropic agents, Biochem. J. 194:639–643.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., and Denton, R. M., 1984, Role of Ca2+ ions in the regulation of intramitochondrial metaoblism in rat heart, Biochem. J. 218:235–247.

    PubMed  CAS  Google Scholar 

  • McCormack, J. G., Edgell, N. J., and Denton, R. M., 1982, Studies on the interactions of Ca2+ and pyruvate in regulation of rat heart pyruvate dehydrogenase activity,Biochem. J. 202:419–427.

    PubMed  CAS  Google Scholar 

  • McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J. R., and Cohen, P., 1983, A multifunctional calmodulin-dependent protein kinase: Similarities between skeletal muscle glycogen synthase kinase and a brain synapsin I kinase, FEBS Lett. 163:329–334.

    PubMed  CAS  Google Scholar 

  • McGuinness, T. L., Lai, Y., and Greengard, P., 1985, Ca2+/Calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum, J. Biol. Chem. 260:1969–1704.

    Google Scholar 

  • Means, A. R., and Dedman, J. R., 1980, Calmodulin-An intracellular calcium receptor, Nature 285:73–77.

    PubMed  CAS  Google Scholar 

  • Meeker, R. B., and Harden, T. K., 1982, Muscarinic cholinergic receptor-mediated activation of phosphodiesterase, Mol. Pharmacol. 22:310–319.

    PubMed  CAS  Google Scholar 

  • Meier, K. E., Sternfeld, D. R., and Insel, P. A., 1984, Alpha1 and beta2-adrenergic receptors coexpressed on cloned MDCK cells are distinct glycoprotens, Biochem. Biophys. Res. Commun. 118:73–81.

    PubMed  CAS  Google Scholar 

  • Meier, K. E., Sperling, D. M., and Insel, P. A., 1985, Agonist-mediated regulation of α1 and β2-adrenergic receptors in cloned MDCK cells, Am. J. Physiol. 249:C69–C77.

    PubMed  CAS  Google Scholar 

  • Merritt, J. E., Taylor, C. W., Rubin, R. P., and Putney, J. W., Jr., 1986, Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas, Biochem. J. 236:337–343.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 20:339–344.

    Google Scholar 

  • Michell, R. H., 1979, Inositol phospholipids in membrane function, Trends Biochem. Sci. 40:128–131.

    Google Scholar 

  • Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, Stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions, Philos. Trans. R. Soc. Lond. B 296:123–38.

    CAS  Google Scholar 

  • Miller, B. E., and Nelson, D. L., 1977, Calcium fluxes in isolated acinar cells from rat parotid: Effect of adrenergic and cholinergic stimulation, J. Biol. Chem. 252:3629–3636.

    PubMed  CAS  Google Scholar 

  • Molina y Vedia, L. M., and Lapetina, E. G., 1986, Phorbol 12,13-dibutyrate and l-oleyl-2-ace-tyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets, J. Biol. Chem. 261:10493–10495.

    Google Scholar 

  • Moon, S. O., Palfrey, H. C, and King, C., 1984, Phorbol esters potentiate tyrosine phosphorylation of epidermal growth factor receptors in A431 membranes by a calcium-independent mechanism, Proc. Natl. Acad. Sci. USA 81:2298–2302.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Shuman, E. A., Exton, J. H., and Blackmore, P. F., 1982, Stimulation of hepatic glycogenolysis by α1 and α2-adrenergic agonists, J. Biol. Chem. 257:13907–13910.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Blackmore, P. F., and Exton, J. H., 1983a, Age-related changes in the control of hepatic cyclic AMP levels by α1-and β2-adrenergic receptors in male rats, J. Biol. Chem. 258:5103–5109.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Blackmore, P. F., and Exton, J. H., 1983b, Modulation of the β1adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP, J. Biol. Chem. 258:5110– 5116.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Exton, J. H., and Blackmore, P. F., 1983c, Angiotensin II inhibits hepatic cAMP accumulation induced by glucagon and epinephrine and their metabolic effects, FEBS Lett. 153:77–80.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Shipp, C. C, and Exton, J. H., 1983d, Studies on the mechanism of inhibition of hepatic cAMP accumulation by vasopressin, FEBS Lett. 163:277–281.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Waynick, L. E., and Exton, J. H., 1983e, Characterisation of the α1-adrenergic control of hepatic cAMP in male rats, Eur. J. Pharmacol. 96:1–10.

    PubMed  CAS  Google Scholar 

  • Morgan, N. G., Rumford, G. M., and Montague, W., 1985, Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans, Biochem. J. 228:713–718.

    PubMed  CAS  Google Scholar 

  • Mori, T., Takai, Y., Yu, B., Takahashi, J., Nishizuka, Y., and Fujikura, T., 1982, Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase, J. Biochem. 91:427–431.

    CAS  Google Scholar 

  • Muallem, S., Schoeffield, M., Pandol, S., and Sachs, G., 1985, Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 82:4433–4437.

    CAS  Google Scholar 

  • Murayama, T., and Ui, M., 1985, Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts, J. Biol. Chem. 260:7226–7233.

    PubMed  CAS  Google Scholar 

  • Murphy, E., Coll, K., Rich, T. L., and Williamson, J. R., 1980, Hormonal effects on calcium homeostasis in isolated hepatocytes, J. Biol. Chem. 255:6600–6608.

    PubMed  CAS  Google Scholar 

  • Nabika, T., Velletri, P. A., Lovenberg, W., and Beaven, M. A., 1985, Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [arg]vasopressin in vascular smooth muscle cells, J. Biol. Chem. 260:4661–4670.

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., Molski, T. F. P., Borgeaut, P., White, J. R., and Sha’afi, R. I., 1985, Phorbol esters inhibit the fMet-Leu-Phe-and leukotriene B4-stimulated calcium mobilization and enzyme secretion in rabbit neutrophils, J. Biol. Chem. 260:2125–2131.

    PubMed  CAS  Google Scholar 

  • Nadler, E., Gillo, B., Lass, Y., and Oron, Y., 1986, Acetylcholine-and inositol 1,4,5-trisphos-phate-induced calcium mobilization in Xenopus laevis oocytes, FEBS Lett. 199:208–212.

    PubMed  CAS  Google Scholar 

  • Nagano, M., Ishibashi, H., McCully, V., and Cottam, G. L., 1980, Epinephrine-stimulated phosphorylation of pyruvate kinase in hepatocytes, Arch. Biochem. Biophys. 203:271–281.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., and Ui, M., 1983, Suppression of passive cutaneous anaphylaxis by pertussis toxin, an islet-activating protein, as a result of inhibition of histamine release from mast cells, Biochem. Pharmacol. 32:3435–3441.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., and Ui, M., 1985, Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin, J. Biol. Chem. 260:3584–3593.

    PubMed  CAS  Google Scholar 

  • Nanberg, E., and Putney, J. W., Jr., 1986, α1Adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates, FEBS Lett. 195:319–322.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., and Greengard, P., 1983, Protein phosphorylation in the brain, Nature 305:583– 588.

    PubMed  CAS  Google Scholar 

  • Nestler, E. J., Walaas, S. I., and Greegard, P., 1984, Neuronal phosphoproteins: Physiological and clinical implications, Science 225:1357–1364.

    PubMed  CAS  Google Scholar 

  • Nicholls, D. G., 1978, The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria, Biochem. J. 176:463–474.

    PubMed  CAS  Google Scholar 

  • Nicholls, D., and Akerman, K., 1982, Mitochondrial calcium transport, Biochim. Biophys. Acta 683:57–88.

    PubMed  CAS  Google Scholar 

  • Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80:36–40.

    PubMed  CAS  Google Scholar 

  • Niggli, V., Penniston, J. T., and Carafoli, E., 1979, Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column, J. Biol. Chem. 254:9955–9958.

    PubMed  CAS  Google Scholar 

  • Nishikawa, M., Shirakawa, S., and Adelstein, R. S., 1985, Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C: Comparative study of the phosphorylated sties, J. Biol. Chem. 260:8978–8983.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:693–698.

    PubMed  CAS  Google Scholar 

  • Nosek, T. M., Williams, M. F., Zeigler, S. T., and Godt, R. E., 1986, Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am. J. Physiol. 250: C807–C811.

    PubMed  CAS  Google Scholar 

  • Ochs, R., 1984, Glutamine metabolism of isolated rat hepatocytes: Evidence for catecholamine activation of α-ketoglutarate dehydrogenase, J. Biol. Chem. 259:13004–13010.

    PubMed  CAS  Google Scholar 

  • Okajima, F., and Ui, M., 1982, Conversion of adrenergic regulation of glycogen phosphorylase and synthase from an a to β type during primary culture of rat hepatocytes, Arch. Biochem. Biophys. 213:658–668.

    PubMed  CAS  Google Scholar 

  • Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils, J. Biol. Chem. 259:13863–13871.

    PubMed  CAS  Google Scholar 

  • Okajima, F., Katada, T., and Ui, M., 1985, Coupling of guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin, J. Biol. Chem. 260:6761–6768.

    PubMed  CAS  Google Scholar 

  • Orellana, S. A., Solski, P. A., and Brown, J. H., 1985, Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 2650:5236–5239.

    Google Scholar 

  • Oron, Y., Dascal, N., Nadler, E., and Lupu, M., 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes, Nature 313:141–143.

    CAS  Google Scholar 

  • O’Rourke, F. A., Halenda, S. P., Zavoico, G. B., and Feinstein, M. B., 1985, Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962.

    PubMed  Google Scholar 

  • Osborne, R., and Tashjian, A. H., Jr., 1981, Tumor-promoting phorbol esters affect production of prolactin and growth hormone by rat pituitary cells, Endocrinology 108:1164–1170.

    PubMed  CAS  Google Scholar 

  • Oviasu, O. A., and Whitton, P. D., 1984, Hormonal control of pyruvate dehydrogenase activity in rat liver, Biochem. J. 224:181–186.

    PubMed  CAS  Google Scholar 

  • Palfrey, H. C., Rothlein, J. E., and Greengard, P., 1983, Calmodulin-dependent protein kinase a associated substrates in Torpedo electric organ, J. Biol. Chem. 256:496–503.

    Google Scholar 

  • Pandol, S. J., and Schoeffield, M. S., 1986, 1,2-diacylglycerol, protein kinase C, and pancreatic enzyme secretion, J. Biol. Chem. 261:4438–4444.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., Barritt, G. J., and Wadsworth, J. C, 1983, A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations. A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations, at 20°C and in the presence of inhibitors of mitochondrial Ca2+ transport, Biochem. J. 216:51–62.

    CAS  Google Scholar 

  • Parod, R. J., and Putney, J. W., Jr., 1978, The role of calcium in the receptor mediated control of potassium permeability in rat lacrimal gland, J. Physiol. 281:371–382.

    PubMed  CAS  Google Scholar 

  • Parod, R. J., and Putney, J. W., Jr., 1979, Stimulation of 45Ca efflux from rat lacrimal gland slices by carbachol and epinephrine, Life Sci. 25:2211–2215.

    PubMed  CAS  Google Scholar 

  • Payne, M. E., and Soderling, T. R., 1980, Calmodulin-dependent glycogen synthase kinase, J. Biol. Chem. 255:8054–8056.

    PubMed  CAS  Google Scholar 

  • Payne, M. E., Schworer, C. M., and Soderling, T. R., 1983, Purification and characterization of rabbit liver calmodulin-dependent glycogen synthase kinase, J. Biol. Chem. 258:2376–2382.

    PubMed  CAS  Google Scholar 

  • Penniston, J., 1983, Plasma membrane Ca2 + -ATPases as active Ca2+ pumps, in: Calcium and Cell Function ,Vol. IV (W. Y. Cheung, ed.), Academic Press, New York, pp. 99–149.

    Google Scholar 

  • Perkins, J. P., and Moore, M. M., 1973, Characterization of the adrenergic receptors mediating a rise in cyclic 3‘,5’-adenosine monophosphate in rat cerebral cortex, J. Pharmacol. Exp. Ther. 185:371–378.

    CAS  Google Scholar 

  • Picton, C., Klee, C. B., and Cohen, P., 1980, Phosphorylase kinase from rabbit skeletal muscle: Identifiction of calmodulin-binding subunits, Eur. J. Biochem. 111:553–561.

    PubMed  CAS  Google Scholar 

  • Pocotte, S. L., and Holz, R. W., 1986, Effects of phorbol ester on tyrosine hydroxylase phosphorylation and activation in cultured bovine adrenal chromaffin cells, J. Biol. Chem. 261:1873– 1877.

    PubMed  CAS  Google Scholar 

  • Pocotte, S. L., Frye, R. A., Senter, R. A., Terbush, D. R., Lee, S. A., and Holz, R. W., 1985, Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures, Proc. Natl. Acad. Sci. USA 82:930–934.

    PubMed  CAS  Google Scholar 

  • Poggioli, J., and Putney, J. W., Jr., 1982, Net calcium fluxes in rat parotid acinar cells: Evidence for a hormone-sensitive calcium pool in or near the plasma membrane, Pfluegers Arch. 392: 239–243.

    CAS  Google Scholar 

  • Poggioli, J., Berthon, B., and Claret, M., 1980, Calcium movements in in situ mitochondria following activation of α-adrenergic receptors in rat liver cells, FEBS Lett. 115:243–246.

    PubMed  CAS  Google Scholar 

  • Poggioli, J., Mauger, J.-P.,Guesdon, F., and Claret, M., 1985, A regulatory calcium-binding site for calcium channel in isolated rat hepatocytes, J. Biol. Chem. 260:3289–3294.

    PubMed  CAS  Google Scholar 

  • Pozzan, T., Arslan, P., Tsien, R. Y., and Rink, T. J., 1982, Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes, J. Cell Biol. 94:335–340.

    CAS  Google Scholar 

  • Preiksaitis, H. G., and Kunos, G., 1979, Adrenoceptor-mediated activation of liver glycogen phosphorylase: Effects of thyroid state, Life Sci. 24:35–41.

    PubMed  CAS  Google Scholar 

  • Preiksaitis, H. G., Kan, W. H., and Kunos, G., 1982, Decreased α1-adrenoceptor responsiveness and density in liver cells of thyroidectomized rats, J. Biol. Chem. 257:4321–4327.

    PubMed  CAS  Google Scholar 

  • Preiss, J., Loomis, C. R., Bishop, W. R., Stein, R., Niedel, J. E., and Bell, R. M., 1986, Quantitative measurement of sn-l,2-diacylglycerols present in platelets, hepatocytes, and ras-and sis-transformed normal rat kidney cells, J. Biol. Chem. 261:8597–8600.

    PubMed  CAS  Google Scholar 

  • Prentki, M. M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984a, Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate, Nature 309:562–564.

    CAS  Google Scholar 

  • Prentki, M., Wollheim, C. B., and Lew, P. D., 1984b, Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259:13777–13782.

    PubMed  CAS  Google Scholar 

  • Prentki, M, Corkey, B. E., and Matschinsky, F. M., 1985, Inositol 1,4,5-trisphosphate and the endoplamsic reticulum Ca2+ cycle of a rat insulinoma cell line, J. Biol. Chem. 260:9185–9190.

    PubMed  CAS  Google Scholar 

  • Prpic, V., Blackmore, P. F., and Exton, J. H., 1982, Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium-dependent, J. Biol. Chem. 257:11323–11331.

    PubMed  CAS  Google Scholar 

  • Prpic, V., Green, K. C., Blackmore, P. F., and Exton, J. H., 1984, Vasopressin-, angiotensin II-, and α1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles, J. Biol. Chem. 259:1382–1385.

    PubMed  CAS  Google Scholar 

  • Pushpendran, C. K., Corvera, S., and Garcia-Sainz, J. A., 1984, Effect of insulin on alpha1 adrenergic actions in hepatocytes from euthyroid and hypothyroid rats, Biochem. Biophys. Res. Commun. 118:451–459.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., 1976, Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine, J. Pharmacol. Exp. Ther. 198:375–384.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., 1977, Muscarinic, alpha-adrenergic, and peptide receptors regulate the same calcium influx sites in the parotid gland, J. Physiol. 268:139–149.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., Burgess, G. M., Halenda, S. P., McKinney, J. S., and Rubin, R. P., 1983, Effects of secretagogues on [32Plphosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas, Biochem. J. 212:483–488.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., McKinney, J. S., Aub, D. L., and Leslie, B. A., 1984, Phorbol ester-induced protein secretion in rat parotid gland, Mol. Pharmacol. 26:261–66.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784.

    PubMed  CAS  Google Scholar 

  • Rebecchi, M. J., and Gershengorn, M. C, 1983, Thyroliberin stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phosphodiesterase in rat mammotropic pituitary cells, Biochem. J. 216:287–294.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1982, Calcium ion fluxes induced by the action of α-adrenergic agonists in perfused rat liver, Biochem. J. 208:619–630.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984a, The contribution of both extracellular and intracellular calcium to the action of α-adrenergic agonists in perfused rat liver, Biochem. J. 220:35–42.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984b, The action of α-adrenergic agonists on plasma-membrane calcium fluxes in perfused rat liver, Biochem. J. 220:43–50.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984c, The role of calcium ions in the mechanism of action of α-adrenergic agonists in rat liver, Biochem. J. 223:1–13.

    PubMed  CAS  Google Scholar 

  • Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984d, The mechanism of α-adrenergic agonist action in liver, Biol. Rev. 59:511–557.

    PubMed  CAS  Google Scholar 

  • Reynolds, E. E., and Dubyak, G. R., 1985, Activation of calcium mobilization and calcium influx by alphai-adrenergic receptors in a smooth muscle cell line, Biochem. Biophys. Res. Commun. 130:627–632.

    PubMed  CAS  Google Scholar 

  • Rhodes, D., Prpic, V., Exton, J. H., and Blackmore, P. F., 1983, Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin, J. Biol. Chem. 258:2770–2773.

    PubMed  CAS  Google Scholar 

  • Rink, T. J., Sanchez, A., and Hallam, T. J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets, Nature 305:317–319.

    PubMed  CAS  Google Scholar 

  • Rittenhouse, S. E., and Sasson, J. P., 1985, Mass changes in myoinositol trisphosphate in human platelets stimulated by thrombin: Inhibitory effects of phorbol ester, J. Biol. Chem. 260:8657–8660.

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587.

    PubMed  CAS  Google Scholar 

  • Roach, P. J., and Goldman, M., 1983, Modification of glycogen synthase activity in isolated rat hepatocytes by tumor-promoting phorbol esters: Evidence for differential regulation of glycogen synthase and phosphorylase, Proc. Natl. Acad. Sci. USA 80:7170–7172.

    PubMed  CAS  Google Scholar 

  • Roach, P. J., DePaoli-Roach, A. A., and Larner, J., 1978, Ca2+-stimulated phosphorylation of muscle glycogen synthase by phosphorylase b kinase, J. Cyclic Nucleotide Res. 4:245–257.

    PubMed  CAS  Google Scholar 

  • Rubin, R. P., Godfrey, P. P., Chapman, D. A., and Putney, J. W., Jr., 1984, Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas, Biochem. J. 219:655–659.

    PubMed  CAS  Google Scholar 

  • Ruegg, J. C., 1982, Vascular smooth muscle: Intracellular aspects of adrenergic receptor contraction coupling, Experientia 38:1400–1404.

    PubMed  CAS  Google Scholar 

  • Sano, K., Takai, Y., Yamanishi, J., and Nishizuka, Y., 1983, A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation, J. Biol. Chem. 258:2010–2013.

    PubMed  CAS  Google Scholar 

  • Schacht, J., and Agranoff, B. W., 1972, Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by [32P]orthophosphate in nerve, J. Biol. Chem. 241:114–111.

    Google Scholar 

  • Schimmel, R. J., McCarthy, L, and Dzierzanowski, D., 1985, Effects of pertussis toxin treatment on metabolism in hamster brown adipocytes, Am. J. Physiol. 249:C456–C463.

    PubMed  CAS  Google Scholar 

  • Schulman, H., 1984a, Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin dependent protein kinase, J. Cell Biol. 99:11–19.

    PubMed  CAS  Google Scholar 

  • Schulman, H., 1984b, Calcium-dependent protein kinases and neuronal function, Trends Pharmacol. Sci. 5:188–192.

    CAS  Google Scholar 

  • Schulman, H., and Greengard, P., 1978a, Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature 271:478–479.

    PubMed  CAS  Google Scholar 

  • Schulman, H., and Greengard, P., 1978b, Ca2 +-dependent protein phosphorylation system in membranes from various tissues, and its activation, by “calcium-dependent regulator,” Proc. Natl. Acad. Sci. USA 75:5432–5436.

    PubMed  CAS  Google Scholar 

  • Schultz, J., and Daly, J. W., 1973, Adenosine 3‘,5’-monophosphate in guinea pig cerebral cortical slices: Effects of α- and β-adrenergic agents, histamine, serotonin, and adenosine, J. Neuro- chem. 21:573–579.

    CAS  Google Scholar 

  • Schworer, C. M., and Soderling, T. R., 1983, Substrate specificity of liver calmodulin-dependent glycogen synthase kinase, Biochem. Biophys. Res. Commun. 116:412–416.

    PubMed  CAS  Google Scholar 

  • Schworer, C. M., El-Maghrabi, M. R., Pilkis, S. J., and Soderling, T. R., 1985, Phosphorylation of L-type pyruvate kinase by a Ca2+/calmodulin-dependent protein kinase, J. Biol. Chem. 260:13018–13022.

    PubMed  CAS  Google Scholar 

  • Seidman, C. E., Hess, H. J., Homcy, C. J., and Graham, R. M., 1984, Photoaffinity labeling of the α1-adrenergic receptor using an 125I-labeled aryl azide analogue of prazosin, Biochemistry 23:3765–3770.

    PubMed  CAS  Google Scholar 

  • Seyfred, M. A., and Wells, W. W., 1984, Subcellular site and mechanism of vasopressin-stimulated hydrolysis of phosphoinositides in rat hepatocytes, J. Biol. Chem. 259:7666–7672.

    PubMed  CAS  Google Scholar 

  • Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes, J. Biol. Chem. 259:13204–13208.

    PubMed  CAS  Google Scholar 

  • Sha’afi, R. I., White, J. R., Molski, T. F. P., Shefcyk, J., Volpi, M., Naccache, P. H., and Feinstein, M. B., 1983, Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium, Biochem. Biophys. Res. Commun. 114:638–645.

    CAS  Google Scholar 

  • Sharkey, N. A., Leach, K. L., and Blumberg, P. M., 1984, Competitive inhibition by diacylglycerol of specific phorbol ester binding, Proc. Natl. Acad. Sci. USA 81:607–610.

    PubMed  CAS  Google Scholar 

  • Shears, S. B., and Kirk, C. J., 1984a, Determination of mitochondrial calcium content in hepatocytes by a rapid cellular-fractionation technique, α-Adrenergic agonists do not mobilize mitochondrial Ca2+, Bichem. J. 219:383–89.

    PubMed  CAS  Google Scholar 

  • Shears, S. B., and Kirk, C. J., 1984b, Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique. Vasopressin stimulates mitochondrial Ca2+ uptake, Biochem. J. 220:417–421.

    PubMed  CAS  Google Scholar 

  • Shenolikar, S., Cohen, P. T. W., Cohen, P., Nairn, A. C, and Perry, S. V., 1979, The role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle, Eur. J. Biochem. 100:329–337.

    PubMed  CAS  Google Scholar 

  • Shoyab, M., De Larco, J. E., and Todaro, G. J., 1979, Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors, Nature 279:387–391.

    PubMed  CAS  Google Scholar 

  • Shreeve, S. M., Fraser, C. M., and Venter, J. C, 1985, Molecular comparison of α1 and α2- adrenergic receptors suggsts that these proteins are structurally related “isoreceptors,” Proc. Natl. Acad. Sci. USA 82:4842–4846.

    PubMed  CAS  Google Scholar 

  • Sies, H., Graf, P., and Crane, D., 1983, Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, α-adrenergic agonists, and the ionophore A23187 in perfused rat liver, Biochem. J. 212:271–278.

    PubMed  CAS  Google Scholar 

  • Slack, B. E., Bell, J. E., and Benos, D. J., 1986, Inositol-1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs, Am. J. Physiol. 250:C340–C344.

    PubMed  CAS  Google Scholar 

  • Smith, C.D., Lane, B.C., Kusaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. J. Biol. Chem. 260:5875–5878.

    PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L., Brown, E. R., Barnes, D., Sabir, M. A., Davis, J. S., and Farese, R. V., 1984, Angiotension II rapidly increases phosphatidate-phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells, Proc. Natl. Acad. Sci. USA 81:7812–7816.

    PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L., and Higgins, B. L., 1985, Temperature and nucleotide dependence of calcium release by myoinositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells, J. Biol. Chem. 260:14413–14416.

    PubMed  CAS  Google Scholar 

  • Snavely, M. D., and Insel, P. A., 1982, Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex, Mol. Pharmacol. 22:532–546.

    PubMed  CAS  Google Scholar 

  • Snavely, M. D., Mahan, L. C, O’Connor, D. T., and Insel, P. A., 1983, Selective down regulation of adrenergic receptor subtypes in tissues from rats with pheochromocytoma, Endocrinology 113:354–360.

    PubMed  CAS  Google Scholar 

  • Soloff, M. S., and Sweet, P., 1982, Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial plasma membranes, J.Biol. Chem. 257:10687–10693.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. P., Bond, M., and Somlyo, A. V., 1985, Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo, Nature 314:622–625.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. V., Bond, M., Somlyo, A. P., and Scarpa, A., 1985, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. USA 82:5231–5235.

    PubMed  CAS  Google Scholar 

  • Spat, A., Fabiato, A., and Rubin, R. P., 1985, Binding of inositol trisphosphate by a liver microsomal fraction, Biochem. J. 223:929–932.

    Google Scholar 

  • Staddon, J. M., and McGivan, J. D., 1985, Ca2+-dependent activation of oxoglutarate dehydrogenase by vasopressin in isolated hepatocytes, Biochem. J. 225:327–333.

    PubMed  CAS  Google Scholar 

  • Starke, K., 1977, Regulation of noradrenaline release by presynaptic receptor systems, Rev. Physiol. Bicohem. Pharmacol. 77:1–124.

    CAS  Google Scholar 

  • Sternweis, P. C., and Gilman, A. G., 1982, Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79:4888–4891.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C., and Robishaw, J. D., 1984, Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain, J. Biol. Chem. 259:13806–13813.

    PubMed  CAS  Google Scholar 

  • Stewart, S. J., Prpic, V., Powers, F. S., Bocckino, S. B., Isaacks, R. E., and Exton, J. H., 1986, Perturbation of the human T-cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: Evidence for conversion from inositol trisphosphate, Proc. Natl. Acad. Sci. USA 83:6098–6102.

    PubMed  CAS  Google Scholar 

  • Stiles, G. L., Hoffman, B. B., Hubbard, M., Caron, M. G., and Lefkowitz, R. J., 1983, Guanine nucleotides and alpha1-adrenergic receptors in the heart, Biochem. Pharmacol. 32:69–71.

    PubMed  CAS  Google Scholar 

  • Stoehr, S. J., Smolen, J. E., Holz, R. W., and Agranoff, B. W., 1986, Inositol trisphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells, J. Neurochem. 46:637–640.

    PubMed  CAS  Google Scholar 

  • Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic dephos- phorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.

    PubMed  CAS  Google Scholar 

  • Storm, H., Van Hardeveld, C., and Kassenaar, A. A. H., 1984, The influence of hypothyroidism on the adrenergic stimulation of glycogenosis in perfused rat liver, Biochim. Biophys. Acta 798:350–360.

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., 1984, Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol. 99:15s–21s.

    PubMed  CAS  Google Scholar 

  • Straub, R. E., and Gershengorn, M. C., 1986, Thyrotropin-releasing hormone and GTP activate inositol trisphosphate formation in membranes isolated from rat pituitary cells, J. Biol. Chem. 261:2712–2717.

    PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a nonmi- tochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-triphosphate, Nature 306:67–69.

    CAS  Google Scholar 

  • Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F., and Schulz, I., 1984, Effect of inositol-1,4,5-trisphosphate in isolated subcellular fractions of rat pancreas, J. Membr. Biol. 81: 241–253.

    PubMed  CAS  Google Scholar 

  • Streb, H., Heslop, J. P., Irvine, R. F., Schulz, I., and Berridge, M. J., 1985, Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production is permeabilized pancreatic acinar cells, J. Biol. Chem. 260:7309–7315.

    PubMed  CAS  Google Scholar 

  • Strickland, W. G., Blackmore, P. F., and Exton, J. H., 1980, The role of calcium in alpha-adrenergic inactivation of glycogen synthase in rat hepatocytes and its inhibition by insulin, Diabetes 29:617–622.

    PubMed  CAS  Google Scholar 

  • Strickland, W. G., Imazu, M., Chrisman, T. D., and Exton, J. H., 1983, Regulation of rat liver glycogen synthase: Roles of Ca2+, phosphorylase kinase, and phosphorylase a, J. Biol. Chem. 258:5490–5497.

    PubMed  CAS  Google Scholar 

  • Studer, R. K., and Borle, A. B., 1982, Differences between male and female rats in the regulation of hepatic glycogenosis: The relative role of calcium and cAMP in phosphorylase activation by catecholamines, J. Biol. Chem. 257:7987–7993.

    PubMed  CAS  Google Scholar 

  • Studer, R. K., and Borle, A. B., 1983, Sex difference in cellular calcium metabolism of rat hepatocytes and in α-adrenergic activation of glycogen phosphorylase, Biochim. Biophys. Acta 762:302–314.

    PubMed  CAS  Google Scholar 

  • Studer, R. K., and Borle, A. B., 1984, Effect of adrenalectomy on cellular calcium metabolism and on the response to adrenergic stimulation of hepatocytes isolated from male and female rats, Biochim. Biophys. Acta 804:377–385.

    PubMed  CAS  Google Scholar 

  • Stall, J. T., Manning, D. R., High, C. W., and Blumenthal, D. K., 1980, Phosphorylation of contractile proteins in heart and skeletal muscle, Fed. Proc. 39:1552–1557.

    Google Scholar 

  • Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of procine coronary artery, Biochem. Biophys. Res. Commun. 120:481–485.

    PubMed  CAS  Google Scholar 

  • Sugano, T., Shiota, M., Khono, H., Shimada, M., and Oshino, N., 1980, Effects of calcium ions on the activation of gluconeogenesis by norepinephrine in perfused rat liver, J. Biochem. (Tokyo) 87:465–472.

    CAS  Google Scholar 

  • Sugden, A. L., Sugden, D., and Klein, D. C., 1986, Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes, J. Biol. Chem. 261:11608–11612.

    PubMed  CAS  Google Scholar 

  • Sugden, D., Vanecek, J., Klein, D. C, Thomas, T. P., and Anderson, W. B., 1985, Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes, Nature 314:359–361.

    PubMed  CAS  Google Scholar 

  • Sugden, M. C, and Watts, D. I., 1983, Stimulation of [l-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin, and angiotensin, Biochem. J. 212:85–91.

    CAS  Google Scholar 

  • Sugden, M. C., Tordoff, A. F. C., Ilic, V., and Williamson, D. H., 1980, α-Adrenergic stimulation of [l-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes, FEBS Lett. 120:80–84.

    PubMed  CAS  Google Scholar 

  • Szuts, E. Z., Wood, S. F., Reid, M. S., and Fein, A., 1986, Light stimulates the rapid formation of inositol trisphosphate in squid retinas, Biochem. J. 240:929–932.

    PubMed  CAS  Google Scholar 

  • Tada, M., and Katz, A. M., 1982, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Annu. Rev. Physiol. 44:401–423.

    PubMed  CAS  Google Scholar 

  • Tada, M., Ohmori, F., Yamada, M., and Abe, H., 1979, Mechanism of the stimulation of Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3‘ : 5’-monophosphate-dependent protein kinase, J. Biol. Chem. 254:319–326.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979a, Calcium- dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692–3695.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1979b, Unsaturated diacylglycerol as a possible messenger for activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91:1218–1224.

    PubMed  CAS  Google Scholar 

  • Taylor, W. M., Prpic, V., Exton, J. H., and Bygrave, F. L., 1980, Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with α-adrenergic agonists a with glucagon, Biochem. J. 188:443–450.

    PubMed  CAS  Google Scholar 

  • Taylor, W. M., Reinhart, P. H., and Bygrave, F. L., 1983, Stimulation by α-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation, and gluconeogenesis in perfused rat liver, Biochem. J. 212:555–565.

    CAS  Google Scholar 

  • Thevenod, F., Streb, H., Ullrich, K. J., and Schulz, I., 1986, Inositol trisphosphate releases Ca2+ from a nonmitochondrail store site in permeabilized rat cortical kidney cells, Kidney Int. 29:695–702.

    PubMed  CAS  Google Scholar 

  • Thieleczek, R., and Heilmeyer, L. M. G., Jr., 1986, Inositol 1,4,5-trisphosphate enhances Ca2+-sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres, Biochem. Biophys. Res. Commun. 135:662–669.

    PubMed  CAS  Google Scholar 

  • Thomas, A. P., Marks, J. S., Coll, K. E., and Williamson, J. R., 1983, Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716–5725.

    PubMed  CAS  Google Scholar 

  • Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.

    PubMed  CAS  Google Scholar 

  • Thomopoulos, P., Testa, U., Gourdin, M. F., Hervy, C., Titeaux, M., and Vaincheaker, W., 1982, Inhibition of insulin receptor binding by phorbol esters, Eur. J. Biochem. 129:389–393.

    PubMed  CAS  Google Scholar 

  • Tolbert, M. E. M., Butcher, F. R., and Fain, J. N., 1973, Lack of correlation between catecholamine effects on cyclic adenosine 3‘ : 5’-monophosphate and glyconeogenesis in isolated rat liver cells, J. Biol. Chem. 248:5686–5692.

    PubMed  CAS  Google Scholar 

  • Tolbert, M. E. M., White, A. C., Aspry, K., Cutts, J., and Fain, J. N., 1980, Stimulation by vasopressin and α-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells, J. Biol. Chem. 255:1938–1944.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., 1980, New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures, Biochemistry 19:2396–2404.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator, J. Cell Biol. 94:325–334.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y., Pozzan, T., and Rink, T. J., 1984, Measuring and manipulating cytosolic Ca2+ with trapped indicators, Trends Biochem. Sci. 9:263–266.

    CAS  Google Scholar 

  • Uchida, T., Ito, H., Baum, B. J., Roth, G. S., Filburn, C.R., and Sacktor, B., 1982, Alpha1 adrenergic stimulation of phosphatidylinositol-phosphatidic acid turnover in rat parotid cells, Mol. Pharmacol. 21:128–132.

    PubMed  CAS  Google Scholar 

  • Ueda, T., Chueh, S.-H., Noel, M. W., and Gill, D. L., 1986, Influence of inositol 1,4,5-tris- phosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line, J. Biol. Chem. 261:3184–3192.

    PubMed  CAS  Google Scholar 

  • Uhing, R. J., Jiang, H., Prpic, V., and Exton, J. H., 1985, Regulation of a liver plasma membrane phosphoinositide phosphodiesterase by guanine nucleotides and calcium, FEBS Lett. 188:317– 320.

    PubMed  CAS  Google Scholar 

  • Uhing, R. J., Prpic, V., Jiang, H., and Exton, J. H., 1986, Hormone stimulated polyphosphoinositide breakdown in rat liver plasma membranes: Roles of guanine nucleotides and calcium, J. Biol. Chem. 261:2140–2146.

    PubMed  CAS  Google Scholar 

  • Ui, M., Exton, J. H., and Park, C. R., 1973, Effects of glucagon on glutamate metabolism in the perfused rat liver, J. Biol. Chem. 248:5350–5359.

    PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., and Montal, M., 1984, Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes, Biochemistry 23:2347-2353.

    PubMed  CAS  Google Scholar 

  • Van de Werve, G., Proietto, J., and Jeanrenaud, B., 1985, Control of glycogen phosphorylase interconversion by phorbol esters, diacylglycerols, Ca2+, and hormones in isolated rat hepa- tocytes, Biochem. J. 231:511–516.

    PubMed  Google Scholar 

  • Van Dop, C., Yamanaka, G., Steinberg, F., Sekura, R. D., Manclark, C. R., Stryer, L., and Bourne, H. R., 1984, ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors, J. Biol. Chem. 259:23–26.

    PubMed  Google Scholar 

  • Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C, 1985, Atypical synergistic α1 and (β- adrenergic regulation of adenosine 3‘,5’-monophosphate and guansine 3‘,5’-monphosphate in rat pinealocytes, Endocrinology 116:2167–2173.

    PubMed  CAS  Google Scholar 

  • Varsanyi, M., and Heilmeyer, L. M. G., Jr., 1981, Phosphorylation of the 100,000 Mr Ca2+- transport ATPase by Ca2+ or cyclic AMP-dependent and -independent protein kinases, FEBS Lett. 131:223–228.

    PubMed  CAS  Google Scholar 

  • Venter, J. C, Eddy, B., Hall, L. M., and Fraser, C. M., 1984a, Monoclonal antibodies detect the conservation of muscarinic cholinergic receptor structure from Drosophila to human brain and detect possible structural homology with α1adrenergic receptors, Proc. Natl. Acad. Sci. USA 81:272–276.

    PubMed  CAS  Google Scholar 

  • Venter, J. C., Horne, P., Eddy, B., Gregusta, R., and Fraser, C. M., 1984b, Alpha1-adrenergic receptor structure, Mol. Pharmacol. 26:196–205.

    PubMed  CAS  Google Scholar 

  • Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82:6352–6356.

    PubMed  CAS  Google Scholar 

  • Verghese, M. W., Smith, C.D., and Snyderman, R., 1985, Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca2+ mobilization, and cellular respiration by leukocytes, Biochem. Biophys. Res. Commun. 127:450–457.

    PubMed  CAS  Google Scholar 

  • Verhoeven, A. J., Estrela, J. M., and Meijer, A. J., 1985, α-Adrenergic stimulation of glutamine metabolism in isolated rat hepatocytes, Biochem. J. 230:457–463.

    PubMed  CAS  Google Scholar 

  • Vickers, J. D., Kinlough-Rathbone, R. L., and Mustard, J. F., 1984, Changes in the platelet phosphoinositides during the first minute after stimulation of washed rabbit platelets with thrombin, Biochem. J. 219:25–31.

    PubMed  CAS  Google Scholar 

  • Vincentini, L. M., Ambrosini, A., DiVirgilio, F., Pozzan, T., and Meldolesi, J., 1985a, Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca2+ concentration in PC12 cells, J. Cell. Biol. 100:1330–1333.

    Google Scholar 

  • Vincentini, L. M., DiVirgilio, F., Ambrosini, A., Pozzan, T., and Meldolesi, J., 1985b, Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositol hydrolysis and cytosolic Ca2+ rise induced by activation of muscarinic receptors in PC12 cells, Biochem. Biophys. Res. Commun. 127:310–317.

    Google Scholar 

  • Volpe, J., Salviati, G., DiVirgilio, R., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 316:347–349.

    PubMed  CAS  Google Scholar 

  • Volpi, M., Yassin, R., Naccache, P. H., and Sha’afi, R. I., 1983, Chemotactic factors cause rapid decreases in phosphatidylinositol, 4,5-bisphosphate, and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Commun. 112:957–964.

    PubMed  CAS  Google Scholar 

  • Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L., and Sha’afi, R. I., 1985, Pertussis toxin inhibits fMet-Leu-Phe but not phorbol ester stimulated changes in rabbit neutrophils, Proc. Natl. Acad. Sci. USA 82:2708–2712.

    PubMed  CAS  Google Scholar 

  • Vulliet, P. R., Woodgett, J. R., and Cohen, P., 1984, Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase, J. Biol. Chem. 259:13680–13683.

    PubMed  CAS  Google Scholar 

  • Waisman, D. M., Gimble, J. M., Goodman, D. B. P., and Rasmussen, H., 1981, Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles J. Biol. Chem. 256:415–424.

    PubMed  CAS  Google Scholar 

  • Wallace, M. A., and Fain, J. N., 1985, Guanosine 5-0-thiotriphosphate stimulates phospholipase C activity in plasma membranes of rat hepatocytes, J. Biol. Chem. 260:9527–9530.

    PubMed  CAS  Google Scholar 

  • Wallace, M. A., Randazzo, P., Li, S. Y., and Fain, J. N., 1982, Direct stimulation of phosphatidylinositol degradation by addition of vasopressin to purified rat liver plasma membranes, Endocrinology 111:341–343.

    PubMed  CAS  Google Scholar 

  • Wallace, M. A., Poggioli, J., Giraud, F., and Claret, M., 1983, Norepinephrine-induced loss of phosphatidylinositol from isolated rat liver plasma membrane, FEBS Lett. 156:239–243.

    PubMed  CAS  Google Scholar 

  • Watkins, P. A., Moss, J., Burns, D. L., Hewlett, E. L., and Vaughan, M., 1984, Inhibition of bovine outer rod segment GTPase by Bordetella pertussis toxin, J. Biol. Chem. 259:1378–1381.

    PubMed  CAS  Google Scholar 

  • Weiss, S. J., and Putney, J. W., Jr., 1978, Does calcium mediate the increase in potassium permeability due to phenylephrine or angiotension II in the liver, J. Pharmacol. Exp. Ther. 207:669–676.

    PubMed  CAS  Google Scholar 

  • Weiss, S. J., McKinney, J. S., and Putney, J. W., Jr., 1982, Receptor-mediated net breakdown of phosphatidylinositol 4,5-bisphosphate in parotid acinar cells, Biochem. J. 206:555–560.

    CAS  Google Scholar 

  • Whitaker, M., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs, Nature 312:636–639.

    CAS  Google Scholar 

  • White, J. R., Huang, C. K., Hill, J. M., Jr., Naccache, P. H., Becker, E. L., and Sha’afi, R. I., 1984, Effect of phorbol 12-myristate 13-acetate and its analogue 4α-phorbol 4α,13-didecanoate on protein phosphate and lysosomal enzyme release in rabbit neutrophils, J. Biol. Chem. 259:8605–8611.

    PubMed  CAS  Google Scholar 

  • Williamson, D. H., Ilic, V., Tordoff, A. F. C, and Ellington, E. V., 1980, Interactions between vasopressin and glucagon on ketogenesis and oleate metabolism in isolated hepatocytes from fed rats, Biochem. J. 186:621–624.

    PubMed  CAS  Google Scholar 

  • Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Biochim. Biophys. Acta 639:243–295.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., Connolly, T. M., Bross T. E., Majerus, P. W., Sherman, W. R., Tyler, A. N.,Rubin, L. J., and Brown, J. E., 1985, Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C, J. Biol. Chem. 260:13496–13501.

    PubMed  CAS  Google Scholar 

  • Wirthensohn, G., Lefrank, S., and Guder, W. G., 1984, Phospholipid metabolism in rat kidney cortical tubules. II. Effects of hormones on 32P incorporation, Biochim. Biophys. Acta 795:401–410.

    PubMed  CAS  Google Scholar 

  • Wolf, B. A., Comens, P. G., Ackermann, K. E., Sherman, W. R., and McDaniel, M. L., 1985, The digitonin-permeablized pancreatic islet model, Biochem. J. 227:965–969.

    PubMed  CAS  Google Scholar 

  • Wolf, M., LeVine, H., III, May, W. S., Jr., Cuatrecasas, P., and Sahyoun, N., 1985, A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters,, Nature 317:546–551.

    PubMed  CAS  Google Scholar 

  • Wolfe, B. B., Harden, K., and Molinoff, P. B., 1976, β-Adrenergic receptors in rat liver: Effects of adrenalectomy, Proc. Natl. Acad. Sci. USA 73:1343–1347.

    PubMed  CAS  Google Scholar 

  • Woodgett, J. R., Davison, M. T., and Cohen, P., 1983, The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle: Purification, subunit structure, and substrate specificity, Eur. J. Biochem. 136:481–487.

    PubMed  CAS  Google Scholar 

  • Woodgett, J. R., Cohen, P., Yamauchi, T., and Fujisawa, H., 1984, Comparison of calmodulin-dependent glycogen synthase kinase from skeletal muscle and calmodulin-dependent protein kinase-II from brain, FEBS Lett. 163:329–334.

    Google Scholar 

  • Wooten, M. W., and Wrenn, R. W., 1984, Phorbol ester induces intracellular translocation of phospholipid/Ca2 +-dependent protein kinase and stimulates amylase secretion in isol pancreatic acini, FEBS Lett. 171:183–186.

    PubMed  CAS  Google Scholar 

  • Yamada, S., Yamamura, H. I., and Roeske, W. R., 1980, The regulation of cardiac α1-adrenergic receptors by guanine nucleotides and by muscarinic cholinergic agonists, Eur. J. Pharmacol. 63:239–241.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H., Fukunaga, K., Tanaka, E., and Miyamoto, E., 1983, Ca2+- and calmodulin- dependent prosphorylation of microtubule-associated protein 2 and factor t, and inhibition of microtubule assembly, J. Neurochem 41:1119–1125.

    PubMed  CAS  Google Scholar 

  • Yamanishi, J., Takai, Y., Kaibuchi, K., Sano, K., Castagna, M., and Nishizuka, Y., 1983, Synergistic functions of phorbol ester and calcium in serotonin release from human platelets, Biochem. Biophys. Res. Commun. 112:778–786.

    PubMed  CAS  Google Scholar 

  • Yamauchi, T., Nakata, H., and Fujisawa, H., 1981, A new activator protein that activtes tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase, J. Biol. Chem. 256:5404–5409.

    PubMed  CAS  Google Scholar 

  • Yano, K., Nakashima, S., and Nozawa, Y., 1983, Coupling of polyphosphoinositide breakdown with calcium efflux in formyl-methionyl-leucyl-phenlalanine-stimulated rabbit neutrophils, FEBS Lett. 161:296–300.

    PubMed  CAS  Google Scholar 

  • Yin, H. L., and Stossel, T. P., 1982, Calcium control of actin network structure by gelsolin, in: Calcium and Cell Function ,Vol. II, pp. 325–337.

    Google Scholar 

  • Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455.

    PubMed  CAS  Google Scholar 

  • Zurini, M., Krebs, J., Penniston, J. T., and Carafoli, E., 1984, Controlled proteolysis of the purified Ca2+-ATPase o the erythrocyte membrane, J. Biol. Chem. 259:618–627.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Exton, J.H. (1987). Mechanisms of α1-Adrenergic and Related Responses. In: Elson, E., Frazier, W., Glaser, L. (eds) Cell Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1915-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1915-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9065-0

  • Online ISBN: 978-1-4613-1915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics