Skip to main content

Abstract

The raw materials of protein structure are the detailed geometry and chemistry of the polypeptide and side chains plus the solvent environment. The end result is a complex tapestry of details organized into a biologically meaningful whole: a variation on one of a few harmonious themes of three-dimensional structure. For the purposes of prediction we are not concerned primarily with either of the endpoints of this process but with the logical connection between the two. Therefore, we summarize what is known of that logical connection into a set of guiding principles: hydrophobicity, hydrogen bonding, handedness, history, and the tension between hierarchy and interrelatedness. In addition, we consider particularly relevant features of the starting and ending states. However, one should bear in mind, as cartooned in Fig. 1, that our abilities to follow the protein through this remarkable transition are still rather limited in both the experimental and the theoritical realms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Meguid, S., Shieh, H.-S., Smith, W., Dayringer, H., Violand, B., and Bentle, L., 1987, Three-dimensional structure of a genetically engineered variant of porcine growth hormone, Proc. Natl. Acad. Sci. U.S.A. 84:6434–6437.

    PubMed  CAS  Google Scholar 

  • Alber, T., Banner, D., Bloomer, A., Petsko, G., Phillips, D., Rivers, P., and Wilson, I., 1981, On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase, Phil. Trans. R. Soc. Lond. [Biol.] 293:159–171.

    CAS  Google Scholar 

  • Anderson, A., and Hermans, J., 1988, Microfolding: Conformational probability map for the alanine dipeptide in water from molecular dynamics simulations, Proteins 3:262–265.

    PubMed  CAS  Google Scholar 

  • Anderson, C., Stenkamp, R., McDonald, R., and Steitz, T., 1978, A refined model of the sugar binding site of yeast hexokinase B, J. Mol. Biol. 123:207–210.

    PubMed  CAS  Google Scholar 

  • Argos, P., and Palau, J., 1982, Amino acid distribution in protein secondary structures, Int. J. Peptide Protein Res. 19:380–393.

    CAS  Google Scholar 

  • Argos, P., Rossman, M., and Johnson, J., 1977, A four-helical super-secondary structure, Biochem. Biophy. Res. Commun. 75:83–86.

    CAS  Google Scholar 

  • Baker, E., and Hubbard, R., 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol. 44:97–179.

    PubMed  CAS  Google Scholar 

  • Banner, D., Kokkinidis, M., and Tsemoglou, D., 1987, The structure of the ColE1 ROP protein at 1.7Å resolution, J. Mol. Biol. 196:657–675.

    PubMed  CAS  Google Scholar 

  • Bernstein, F., Koetzle, T., Williams, G., Meyer, E., Jr., Brice, M., Rodgers, J., Kennard, O., Shimanouchi, T., and Tasumi, M., 1977, The Protein Data Bank: A computer-based archival file for macromolecular structures, J. Mol. Biol. 112:535–542.

    PubMed  CAS  Google Scholar 

  • Blanc, J., and Kaiser, E., 1984, Biological and physical properties of a ß-endorphin analog containing only Ũ-amino acids in the amphiphilic helical segment 13–31, J. Biol. Chem. 259:9549–9556.

    PubMed  CAS  Google Scholar 

  • Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnell, B., and Wistow, G., 1981, The molecular structure and stability of the eye lens: X-ray analysis of gamma-crystallin II, Nature 289: 771–777.

    PubMed  CAS  Google Scholar 

  • Blundell, T., Singh, J., Thornton, J., Burley, S., and Petsko, G., 1986, Aromatic interactions, Science 234: 1005.

    CAS  Google Scholar 

  • Blundell, T., Sibanda, B., Sternberg, M., and Thornton, J., 1987, Knowledge-based prediction of protein structures and the design of novel molecules, Nature 326:347–352.

    PubMed  CAS  Google Scholar 

  • Brandts, J., Halvorson, H., and Brennan, M., 1975, Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues, Biochemistry 14:4953–4963.

    PubMed  CAS  Google Scholar 

  • Braun, W., Wagner, G., Wörgötter, E., Vašák, M., Kägi, J., and Wüthrich, K., 1986, Polypeptide fold in the two metal clusters of metallothionein-2 by nuclear magnetic resonance in solution, J. Mol. Biol. 187:125–129.

    PubMed  CAS  Google Scholar 

  • Bryan, P., Rollence, M., Pantoliano, M., Wood, J., Finzel, B., Gilliland, G., Howard, A., and Poulos, T., 1986, Proteases of enhanced stability: Characterization of a thermostable variant of subtilisin, Proteins 1: 326–334.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1973, Conformation of twisted ß-pleated sheets in proteins, J. Mol. Biol. 75:295–302.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1–14.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1983, Coiling of ß-pleated sheets, J. Mol. Biol. 163:107–117.

    PubMed  CAS  Google Scholar 

  • Chothia, C., and Janin, J., 1981, Relative orientation of close-packed ß-pleated sheets in proteins, Proc. Natl. Acad. Sci. U.S.A. 78:4146–4150.

    PubMed  CAS  Google Scholar 

  • Chothia, C., Levitt, M., and Richardson, D., 1977, Structure of proteins: Packing of α-helices and pleated sheets, Proc. Natl. Acad. Sci. U.S.A. 74:4130–4134.

    PubMed  CAS  Google Scholar 

  • Chou, P., and Fasman, G., 1977, ß-Turns in proteins, J. Mol. Biol. 115:135–175.

    PubMed  CAS  Google Scholar 

  • Chou, K.-C., Némethy. G.. Pottle, M., and Scheraga. H.. 1989 J. Mol. Biol. 205:241–249.

    PubMed  CAS  Google Scholar 

  • Cook, W., Einspahr, H., Trapane, T., Urry, D., and Bugg, C., 1980, The crystal structure and conformation of the cyclic trimer of a repeat pentapeptide of elastin: Cyclo L Val-L Pro-Gly-L Val-Gly, J. Am. Chem. Soc. 102:5502–5505.

    CAS  Google Scholar 

  • Creighton, T., 1977, Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor, J. Mol. Biol. 113:275–293.

    PubMed  CAS  Google Scholar 

  • DeGrado, W., Musso, G., Lieber, M., Kaiser, E., and Kezdy, F., 1982, Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue, Biophys. J. 37:329–338.

    PubMed  CAS  Google Scholar 

  • Deisenhofer, J., Jones, T., Huber, R., Sjodahl, J., and Sjoquist, J., 1978, Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus, Hoppe Zeylers Z. Physiol. Chem. 359:975–985.

    CAS  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudornonas viridis at 3Å resolution, Nature 318:618–624.

    Google Scholar 

  • Edwards, M., Sternberg, M., and Thornton, J., 1987, Structural and sequence patterns in the loops of ßαß units, Protein Eng. 1:173–181.

    PubMed  CAS  Google Scholar 

  • Efimov, A., 1982, Role of constrictions in formation of protein structures containing four helical regions, Mol. Biol. (Mosk.) 16:271–281.

    CAS  Google Scholar 

  • Eisenberg, D., Weiss, R., and Terwilliger, T., 1982, The helical hydrophobic moment: A measure of the amphiphilicity of a helix, Nature 299:371–374.

    PubMed  CAS  Google Scholar 

  • Engelman, D., Henderson, R., McLachlan, A., and Wallace, B., 1980, Path of the polypeptide in bacteriorhodopsin, Proc. Natl. Acad. Sci. U.S.A. 77:2023–2027.

    PubMed  CAS  Google Scholar 

  • Epstein, C., Goldberger, R., and Anfinsen, C., 1963, The genetic control of tertiary protein structure: Studies with model systems, Cold Spring Harbor Symp. Quant. Biol. 28:439–449.

    CAS  Google Scholar 

  • Ghosh, S., Bock, S., Rokita, S., and Kaiser, E., 1986, Modification of the active site of alkaline phosphatase by site-directed mutagenesis, Science 231:145–148.

    PubMed  CAS  Google Scholar 

  • Grathwohl, C., and Wüthrich, K., 1974, Carbon-13 NMR of the protected tetrapeptides TFA-Gly-GlY-L-X-L-Ala-OCH3, where X stands for the 20 common amino acids, J. Magnet. Res. 13:217–225.

    CAS  Google Scholar 

  • Hecht, M., Sturtevant, J., and Sauer, R., 1986, Stabilization of lambda repressor against thermal denaturation by site-directed Gly → Ala changes in α-helix 3, Proteins 1:43–46.

    PubMed  CAS  Google Scholar 

  • Hol, W., van Duijnen, P., and Berendsen, H., 1978, The α-helix dipole and the properties of proteins, Nature 273:443–446.

    PubMed  CAS  Google Scholar 

  • Honig, B., Hubbell, W., and Flewelling, R., 1986, Electrostatic interactions in membranes and proteins, Annu. Rev. Biophys. Bioeng. 15:163–193.

    CAS  Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature, 1970, Abbreviations and symbols for the description of the conformation of polypeptide chains, J. Biol. Chem. 245:6489–6497.

    Google Scholar 

  • James, M., and Sielecki, A., 1983, Structure and refinement of penicillopepsin at 1.8Å resolution, J. Mol. Biol. 163:299–361.

    PubMed  CAS  Google Scholar 

  • Janin, J., 1979, Surface and inside volumes in globular proteins, Nature 277:491–492.

    PubMed  CAS  Google Scholar 

  • Janin, J., and Wodak, S., 1978, Conformation of amino acid side-chains in proteins, J. Mol. Biol. 125:357–386.

    PubMed  CAS  Google Scholar 

  • Kabsch, W., and Sander, C., 1983, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22:2577–2637.

    PubMed  CAS  Google Scholar 

  • Karle, I., Kishore, R., Raghothama, S., and Balaram, P., 1988, Cyclic cystine peptides: Antiparallel ß-sheet conformation for the 20-membered ring in BOC-Cys-Val-Aib-Ala-Leu-Cys-NHMe, J. Am. Chem. Soc. 110:1958–1963.

    CAS  Google Scholar 

  • Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14:1–63.

    PubMed  CAS  Google Scholar 

  • Kendrew, J., Watson, H., Stranberg, B., and Dickerson, R., 1961, The amino-acid sequence of sperm whale myoglobin: A partial determination by x-ray methods, and its correlation with chemical data, Nature 190: 666–670.

    PubMed  CAS  Google Scholar 

  • Kline, A., Braun, W., and Wüthrich, K., 1986, Studies by 1H nuclear magnetic resonance and distance geometry of the solution conformation of the α-amylase inhibitor Tendamistat, J. Mol. Biol. 189: 377–382.

    PubMed  CAS  Google Scholar 

  • Kretsinger, R., and Nockolds, C., 1973, Carp muscle calcium-binding protein, J. Biol. Chem. 248:3313–3326.

    PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    PubMed  CAS  Google Scholar 

  • Lesk, A., and Chothia, C., 1980, How different amino acids determine similar protein structures: The structure and evolutionary dynamics of the globins, J. Mol. Biol. 136:225–270.

    PubMed  CAS  Google Scholar 

  • Lesk, A., and Chothia, C., 1984, Mechanisms of domain closure in proteins, J. Mol. Biol. 174:175–191.

    PubMed  CAS  Google Scholar 

  • Leszczynski, J., and Rose, G., 1986, Loops in globular proteins: A novel category of secondary structure, Science 234:849–855.

    PubMed  CAS  Google Scholar 

  • Levitt, M., and Greer, J., 1977, Automatic identification of secondary structure in globular proteins, J. Mol. Biol. 114:181–239.

    PubMed  CAS  Google Scholar 

  • Lewis, P., Momany, F., and Scheraga, H., 1973, Chain reversals in proteins, Biochim. Biophys. Acta 303:211–229.

    PubMed  CAS  Google Scholar 

  • Lifson, S., and Sander, C., 1979, Antiparallel and parallel ß-strands differ in amino acid residue preferences, Nature 282: 109–111.

    PubMed  CAS  Google Scholar 

  • Lifson, S., and Sander, C., 1980, Specific recognition in the tertiary structure of ß-sheets of proteins, J. Mol. Biol. 139:627–639.

    PubMed  CAS  Google Scholar 

  • Low, B., Preston, H., Sato, A., Rosen, L., Searl, J., Rudko, A., and Richardson, J., 1976, Three dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 73:2991–2994.

    PubMed  CAS  Google Scholar 

  • Matthews, B., Nicholson, H., and Becktel, W., 1987, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding, Proc. Natl. Acad. Sci. U.S.A. 84:6663–6667.

    PubMed  CAS  Google Scholar 

  • McPhalen, C., 1986, X-ray Crystallographic Studies on Subtilisins and Their Protein Inhibitors, Ph. D. thesis, University of Alberta, Edmonton.

    Google Scholar 

  • McPhalen, C., Schnebli, H., and James, M., 1985, Crystal and molecular structure of the inhibitor eglin from leeches in complex with subtilisin Carlsberg, FEBS Lett. 188:55–58.

    PubMed  CAS  Google Scholar 

  • Momany, F., McGuire, R., Burgess, A., and Scheraga, H., 1975, Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79:2361–2380.

    CAS  Google Scholar 

  • Nakashima, H., Nishikawa, K., and Ooi, T., 1986, The folding type of a protein is relevant to the amino acid composition, J. Biochem. (Tokyo) 99:153–162.

    CAS  Google Scholar 

  • Newcomer, M., Jones, T., Åqvist, J., Sundelin, J., Eriksson, U., Rask, L., and Peterson, P., 1984, The three-dimensional structure of retinol-binding protein, EMBO J. 3:1451–1454.

    PubMed  CAS  Google Scholar 

  • Pabo, C., Sauer, R., Sturtevant, J., and Ptashne, M., 1979, The lambda repressor contains two domains, Proc. Natl. Acad. Sci. U.S.A. 76:1608–1612.

    PubMed  CAS  Google Scholar 

  • Pflugrath, J., and Quiocho, F., 1985, Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds, Nature 314:257–260.

    PubMed  CAS  Google Scholar 

  • Ptitsyn, O., 1969, Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins, J. Mol. Biol. 42:501–510.

    PubMed  CAS  Google Scholar 

  • Ptitsyn, O., and Finkelstein, A., 1980, Self-organization of proteins and the problem of their three-dimensional structure prediction, in: Protein Folding (R. Jaenicke, ed.), Elsevier, Amsterdam, pp. 101–115.

    Google Scholar 

  • Rao, S., and Rossmann, M., 1973, Comparison of super-secondary structures in proteins, J. Mol. Biol. 76:241–256.

    PubMed  CAS  Google Scholar 

  • Rees, D., Lewis, M., and Lipscomb, W., 1983, Refined crystal structure of carboxypeptidase A at 1.54Å resolution, J. Mol. Biol. 168:367–387.

    PubMed  CAS  Google Scholar 

  • Rice, D., Ford, G., White, J., Smith, J., and Harrison, P., 1983, The spatial structure of horse spleen apoferritin, Adv. Inorg. Biochem. 5:39–50.

    CAS  Google Scholar 

  • Rich, A., and Crick, F., 1961, The molecular structure of collagen, J. Mol. Biol. 3:483–506.

    PubMed  CAS  Google Scholar 

  • Richardson, J., 1976, Handedness of crossover connections in ß sheets, Proc. Natl. Acad. Sci. 73:2619–2623.

    PubMed  CAS  Google Scholar 

  • Richardson, J., 1977, ß-sheet topology and the relatedness of proteins, Nature 268:495–500.

    PubMed  CAS  Google Scholar 

  • Richardson, J., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:167–339.

    PubMed  CAS  Google Scholar 

  • Richardson, J., 1985, Schematic drawings of protein structures, in: Methods in Enzymology, Vol. 115B, Chapter 24 (H. Wyckoff, C. Hirs, and S. Timasheff, eds.), Academic Press, Orlando, pp. 359–380.

    Google Scholar 

  • Richardson, J., and Richardson, D., 1987, Some design principles: Betabellin, in: Protein Engineering, Chapter 12 (D. Oxender and C. Fox, eds.), Alan R. Liss, New York, pp. 149–163,340-341.

    Google Scholar 

  • Richardson, J., and Richardson, D., 1988a, Amino acid preferences for specific locations at the end of α-helices, Science 240:1648–1652.

    PubMed  CAS  Google Scholar 

  • Richardson, J., and Richardson, D., 1988b, Helix lap-joints as ion-bonding sites, Proteins 4:229–239.

    PubMed  CAS  Google Scholar 

  • Richmond, T., and Richards, F., 1978, Packing of α-helices: Geometrical constraints and contact areas, J. Mol. Biol. 119:537–555.

    PubMed  CAS  Google Scholar 

  • Richardson, J., Getzoff, E., and Richardson, D., 1978, The α bulge: A common small unit of nonrepetitive protein structure, Proc. Natl. Acad. Sci. U.S.A. 75:2574–2578.

    PubMed  CAS  Google Scholar 

  • Rose, G., 1978, Prediction of chain turns in globular proteins on a hydrophobic basis, Nature 272:586–590.

    PubMed  CAS  Google Scholar 

  • Rose, G., 1979, Hierarchic organization of domains in globular proteins, J. Mol. Biol. 134:447–470.

    PubMed  CAS  Google Scholar 

  • Rose, G., and Seltzer, J., 1977, A new algorithm for finding the peptide chain turns in a globular protein, J. Mol. Biol. 113:153–164.

    PubMed  CAS  Google Scholar 

  • Rose, G., Geselowitz, A., Lesser, G., Lee, R., and Zehfus, M., 1985, Hydrophobicity of amino acid residues in globular proteins, Science 229:834–838.

    PubMed  CAS  Google Scholar 

  • Salemme, F., 1983, Structural properties ofprotein ß-sheets, Prog. Biophys. Mol. Biol. 42:95–133.

    PubMed  CAS  Google Scholar 

  • Salemme, F., and Weatherford, D., 1981, Conformational and geometrical properties of ß-sheets in proteins: II. Antiparallel and mixed ß-sheets, J. Mol. Biol. 146:119–141.

    PubMed  CAS  Google Scholar 

  • Schellman, C., 1980, The αL conformation at the ends of helices, in: Protein Folding (R. Jaenicke, ed.), Elsevier, Amsterdam, pp. 53–61.

    Google Scholar 

  • Schiffer, M., and Edmundson, A., 1967, Use of helical wheels to represent the structure of proteins and to identify segments of helical potential, Biophys. J. 7:121–135.

    PubMed  CAS  Google Scholar 

  • Sheridan, R., Lee, R., Peters, N., and Allen, L., 1979, Hydrogen-bond cooperativity in protein secondary structure, Biopolymers 18:2451–2458.

    CAS  Google Scholar 

  • Shoemaker, K., Kim, P., York, E., and Baldwin, R., 1987, Tests of the helix dipole model for stabilization of α-helices, Nature 326:563–567.

    PubMed  CAS  Google Scholar 

  • Shortle, D., and Lin, B., 1985, Genetic analysis of staphylococcal nuclease: Identification of three intragenic “global” suppressors of nuclease-minus mutations, Genetics 110:539–555.

    PubMed  CAS  Google Scholar 

  • Sibanda, B., and Thornton, J., 1985, ß-Hairpin families in globular proteins, Nature 316:170–174.

    PubMed  CAS  Google Scholar 

  • Sprang, S., Standing, T., Fletterick, R., Stroud, R., Finer-Moore, J., Xuong, N.-H., Hamlin, R., Rutter, W., and Craik, C., 1987, Tbe three-dimensional structure of Asn102 mutant of trypsin: Role of Asp102 in serine protease catalysis, Science 237:905–909.

    PubMed  CAS  Google Scholar 

  • Steitz, T., Ohlendorf, D., McKay, D., Anderson, W., and Matthews, B., 1982, Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins, Proc. Natl. Acad. Sci. U.S.A. 79:3097–3100.

    PubMed  CAS  Google Scholar 

  • Sternberg, M., and Thornton, J., 1977, On the conformation of proteins: Tbe handedness of the connection between parallel ß-strands, J. Mol. Biol. 110:269–283.

    PubMed  CAS  Google Scholar 

  • Tainer, J., Getzoff, E., Beem, K., Richardson, J., and Richardson, D., 1982, Determination and analysis of the 2Å structure of copper, zinc superoxide dismutase, J. Mol. Biol. 160:181–217.

    PubMed  CAS  Google Scholar 

  • Taylor, W., and Thornton, J., 1983, Prediction of super-secondary structure in proteins, Nature 301:540–542.

    PubMed  CAS  Google Scholar 

  • Teeter, M. M., 1984, Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin, Proc. Natl. Acad. Sci. U.S.A. 81:6014–6018.

    PubMed  CAS  Google Scholar 

  • Venkatachalam, M., 1968, Stereochemical criteria for polypeptides and proteins: Conformation of a system of three linked peptide units, Biopolymers 6:1425–1436.

    PubMed  CAS  Google Scholar 

  • Weber, P., and Salemme, F., 1980, Structural and functional diversity in 4-α-helical proteins, Nature 287:82–84.

    PubMed  CAS  Google Scholar 

  • Wetlaufer, D. B., 1973, Nucleation, rapid folding, and globular intrachain regions in proteins, Proc. Natl. Acad. Sci. U.S.A. 70:697–701.

    PubMed  CAS  Google Scholar 

  • Wilson, I., Haft, D., Getzoff, E., Tainer, J., Lerner, R., and Brenner, S., 1985, Identical short peptide sequences in unrelated proteins can have different conformations: A testing ground for theories of immune recognition, Proc. Natl. Acad. Sci. U.S.A. 82:5255–5259.

    PubMed  CAS  Google Scholar 

  • Wolfenden, R., Andersson, L., Cullis, P., and Southgate, C., 1981, Affinities of amino acid side chains for solvent water, Biochemistry 20:849–855.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Richardson, J.S., Richardson, D.C. (1989). Principles and Patterns of Protein Conformation. In: Fasman, G.D. (eds) Prediction of Protein Structure and the Principles of Protein Conformation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1571-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1571-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8860-2

  • Online ISBN: 978-1-4613-1571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics