Skip to main content

Basic Chemistry of Nitric Oxide and Related Nitrogen Oxides

  • Chapter
Nitric Oxide Research from Chemistry to Biology

Abstract

The general purpose of this chapter is to briefly recall the basic chemistry of NO, especially its own paramagnetism and that of some of the complexes it forms with transition metals. As a full review is out of our scope, we shall only mention data that could be useful to understand the following chapters. In particular we shall attempt to compile some kinetic data which can enable us to propose whether a given reaction between NO and a molecular target could be relevant to the biology of a cell or an animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fontecave M, Pierre J-L. The basic chemistry of nitric oxide and its possible biological reactions. Bull Soc Chim Fr 1994; 131:620–631.

    CAS  Google Scholar 

  2. Henry Y, Bessières P. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 1984; 66:259–289.

    Article  PubMed  CAS  Google Scholar 

  3. Koppenol WH, Moreno JJ, Pryor WA et al. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992; 5:834–842.

    Article  PubMed  CAS  Google Scholar 

  4. Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7:349–360.

    PubMed  CAS  Google Scholar 

  5. Malinski T, Taha Z, Grunfeld S et al. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic micro-sensors. Biochem Biophys Res Commun 1993; 193:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  6. Lancaster JR. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 1994; 91:8137–8141.

    Article  PubMed  CAS  Google Scholar 

  7. Wood J, Garthwaite J. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacol 1994; 33:1235–1244.

    Article  CAS  Google Scholar 

  8. Saran M, Bors W. Signalling by O2 −• and NO: how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? Chem-Biol Interact 1994; 90:35–45.

    Article  PubMed  CAS  Google Scholar 

  9. Vanderkooi JM, Wright WW, Erecinska M. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence. Biochim Biophys Acta 1994; 1207:249–254.

    Article  PubMed  CAS  Google Scholar 

  10. Pauling L. The one-electron bond and the three-electron bond; electron-deficient substances. In: Pauling L ed. The Nature of the Chemical Bond and the Structure of Molecules and Crystals, third edition, Cornell University Press, Ithaca, NY, USA, 1960:340–363.

    Google Scholar 

  11. Dulmage WJ, Meyers EA, Lipscomb WN. On the crystal and molecular structure of N2O2. Acta Cryst 1953; 6:760–764.

    Article  CAS  Google Scholar 

  12. Sluyts EJ, Van der Veken BJ. On the behaviour of nitrogen oxides in liquefied argon and krypton. Dimerisation of nitric oxide. J Mol Struct 1994; 320:249–267.

    Article  CAS  Google Scholar 

  13. Dousmanis GC. Magnetic hyperfine effects and electronic structure of NO. Phys Rev 1955; 97:967–970.

    Article  CAS  Google Scholar 

  14. Lipton SA, Choi Y-B, Pan Z-H et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364:626–632.

    Article  PubMed  CAS  Google Scholar 

  15. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  16. Beringer R, Castle JG. Magnetic resonance absorption in nitric oxide. Phys Rev 1950; 78:581–586.

    Article  CAS  Google Scholar 

  17. Whittaker JW. Molecular paramagnetic resonance of gas-phase nitric oxide. J Chem Educ 1991; 68:421–423.

    Article  CAS  Google Scholar 

  18. Gallagher JJ, Bedard FD, Johnson CM. Microwave spectrum of N14O16. Phys Rev 1954; 93:729–733.

    Article  CAS  Google Scholar 

  19. Gallagher JJ, Johnson CM. Uncoupling effects in the microwave spectrum of nitric oxide. Phys Rev 1956; 103:1727–1737.

    Article  CAS  Google Scholar 

  20. Mizushima M. Theory of the hyperfine structure of NO molecule. Electronic structure. Phys Rev 1957; 105:1262–1270.

    Article  CAS  Google Scholar 

  21. Westenberger AA. Intensity relations for determining gas-phase OH, Cl, Br, I, and free-electron concentrations by quantitative ESR. J Chem Phys 1965; 43:1544–1549.

    Article  Google Scholar 

  22. Westenberger AA, de Haas N. Quantitative ESR measurements of gas-phase H and OH concentrations in the H-NO2 reaction. J Chem Phys 1965; 43:1550–1556.

    Article  Google Scholar 

  23. Galpin JR, Veldink GA, Vliegenthart JFG et al. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim Biophys Acta 1978; 536:356–362.

    PubMed  CAS  Google Scholar 

  24. Stevens TH, Brudvig GW, Bocian FP et al. Structure of cytochrome a 3 -Cua 3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 1979; 76:3320–3324.

    Article  PubMed  CAS  Google Scholar 

  25. Brudvig GW, Stevens TH, Chan SI. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 1980; 19:5275–5285.

    Article  PubMed  CAS  Google Scholar 

  26. Martin CT, Morse RH, Kanne RM et al. Reactions of nitric oxide with tree and fungal laccase. Biochemistry 1981; 20:5147–5155.

    Article  PubMed  CAS  Google Scholar 

  27. Arciero DM, Lipscomb JD, Huynh BH et al. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem 1983; 258:14981–14991.

    PubMed  CAS  Google Scholar 

  28. Nocek JM, Kurtz DM, Pickering RA et al. Oxidation of deoxyhemerythrin to semi-methemoglobin by nitrite. J Biol Chem 1984; 259:12334–12338.

    PubMed  CAS  Google Scholar 

  29. Nelson MJ. The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH and ethanol effects on the active site iron. J Biol Chem 1987;262:12137–12142.

    PubMed  CAS  Google Scholar 

  30. Musci G, Di Marco S, Bonaccorsi di Patti M et al. Interaction of nitric oxide with ceruloplasmin lacking an EPR-detectable type 2 copper. Biochemistry 1991; 30:9866–9872.

    Article  PubMed  CAS  Google Scholar 

  31. Akhtar MJ, Bonner FT, Hughes M. Reaction of nitric oxide with hyponitrous acid: a hydrogen atom abstraction reaction. Inorg Chem 1985; 24:1934–1935.

    Article  CAS  Google Scholar 

  32. Bonner FT, Hughes MN. No lack of NO activity. Science 1993; 260:145–146.

    PubMed  CAS  Google Scholar 

  33. Bonner FT, Dzelzkalns LS, Bonucci JA. Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition. Inorg Chem 1978; 17:2487–2494.

    Article  CAS  Google Scholar 

  34. Bonner FT, Wang N-Y. Reduction of nitric oxide by hydroxylamine. 1. Kinetics and mechanism. Inorg Chem 1986; 25:1858–1862.

    Article  CAS  Google Scholar 

  35. Grätzel M, Tanigushi S, Henglein A. Pulsradiolytische untersuchung kurzlebiger zwischenprodukte der NO-reduction in wässriger lösung. Ber Bunsen-Ges Phys Chem 1970; 10:1003–1010.

    Google Scholar 

  36. Bazylinski D, Hollocher TC. Evidence from the reaction between trioxodinitrate(II) and 15NO that trioxodinitrate(II) decomposes into nitrosyl hydride and nitrite in neutral aqueous solution. Inorg Chem 1985; 24:4285–4288.

    Article  CAS  Google Scholar 

  37. Iqbal ZM, Dahl K, Epstein SS. Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science 1980; 207:1475–1477.

    Article  PubMed  CAS  Google Scholar 

  38. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Clarendon Press, Oxford, 1985.

    Google Scholar 

  39. Kosaka H, Uozumi M. Inhibition by amines indicates involvement of nitrogen dioxide in autocatalytic oxidation of oxyhemoglobin by nitrite. Biochim Biophys Acta 1986; 871:14–18.

    Article  PubMed  CAS  Google Scholar 

  40. Huie RE. The reaction kinetics of NO2. Toxicology 1994; 89:193–216.

    Article  PubMed  CAS  Google Scholar 

  41. Stephens RJ, Freeman G, Evans MJ. Early response of lungs to low levels of nitrogen dioxide: light and electron microscopy. Arch Environ Health 1972; 24:160–179.

    PubMed  CAS  Google Scholar 

  42. Halliwell B, Hu M-L, Louie S et al. Interaction of nitrogen dioxide with human plasma: antioxidant depletion and oxidative damage. FEBS Lett 1992; 313:62–66.

    Article  PubMed  CAS  Google Scholar 

  43. Benjamin N, O’Driscoll F, Dougall H et al. Stomach NO synthesis. Nature 1994; 368:502.

    Article  PubMed  CAS  Google Scholar 

  44. Duncan C, Dougall H, Johnston P et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Medicine 1995; 1:546–551.

    Article  PubMed  CAS  Google Scholar 

  45. Lundberg JON, Farkas-Szallasi T, Weitzberg E et al. High nitric oxide production in human paranasal sinuses. Nature Medicine 1995; 1:370–373.

    Article  PubMed  CAS  Google Scholar 

  46. Murphy ME, Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA 1991;88:10860–10864.

    Article  PubMed  CAS  Google Scholar 

  47. Fukuto JM, Hobbs AJ, Ignarro LJ. Conversion of nitroxyl (HNO) to nitric oxide (NO) in biological systems: the role of physiological oxidants and relevance to the biological activity of HNO. Biochem Biophys Res Commun 1993;196:707–713.

    Article  PubMed  CAS  Google Scholar 

  48. Akhtar MJ, Lutz CA, Bonner FT. Decomposition of sodium trioxodinitrate (Na2N2O3) in the presence of added nitrite in aqueous solution. Inorg Chem 1979; 18:2369–2375.

    Article  CAS  Google Scholar 

  49. Doyle MP, Mahapatro SN. Nitric oxide dissociation from trioxodinitrate (II) in aqueous solution. J Am Chem Soc 1984; 106:3678–3679.

    Article  CAS  Google Scholar 

  50. Donald CE, Hughes MN, Thompson JM et al. Photolysis of the N=N bond in trioxonitrate: reaction between triplet NO and O2 to form peroxonitrite. Inorg Chem 1986; 25:2676–2677.

    Article  CAS  Google Scholar 

  51. Wink DA, Darbyshire JF, Nims RW et al. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1993; 6:23–27.

    Article  PubMed  CAS  Google Scholar 

  52. Ford PC, Wink DA, Stanbury DM. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 1993; 326:1–3.

    Article  PubMed  CAS  Google Scholar 

  53. Ignarro LJ, Fukuto JM, Griscavage JM et al. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci USA 1993; 90:8103–8107.

    Article  PubMed  CAS  Google Scholar 

  54. Pogrebnaya VL, Usov AP, Baranov AV et al. Oxidation of nitric oxide by oxygen in the liquid phase. J Applied Chem USSR 1975; 48:1004–1007.

    Google Scholar 

  55. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 1994; 269:5881–5883.

    PubMed  CAS  Google Scholar 

  56. Lewis RS, Deen WM. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 1994; 7:568–574.

    Article  PubMed  CAS  Google Scholar 

  57. Mayer B, Klatt P, Werner ER et al. Kinetics and mechanism of tetrahydrobiopterin-induced oxidation of nitric oxide. J Biol Chem 1995; 270:655–659.

    Article  PubMed  CAS  Google Scholar 

  58. Taha Z, Kiechle F, Malinski T. Oxidation of nitric oxide by oxygen in biological systems monitored by porphyrin sensor. Biochem Biophys Res Commun 1992; 188:734–739.

    Article  PubMed  CAS  Google Scholar 

  59. Olbregts J. Thermolecular reaction of nitrogen monoxide and oxygen: a still unsolved problem. Int J Chem Kinetics 1985; 17:835–848.

    Article  CAS  Google Scholar 

  60. Foubert L, Fleming B, Latimer R et al. Safety guidelines for use of nitric oxide. Lancet 1992; 339:1615–1616.

    Article  PubMed  CAS  Google Scholar 

  61. Bouchet M, Renaudin M-H, Raveau C et al. Safety requirement for use of inhaled nitric oxide in neonates. Lancet 1993; 341:968–969.

    Article  PubMed  CAS  Google Scholar 

  62. Miyamoto K, Aida A, Nishimura M et al. Effects of humidity and temperature on nitrogen dioxide formation from nitric oxide. Lancet 1994; 343:1099–1100.

    Article  PubMed  CAS  Google Scholar 

  63. Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline solution. Inorg Chem 1985; 24:3502–3504.

    Article  CAS  Google Scholar 

  64. Bastian NR, Hibbs JB. Assembly and regulation of NADPH oxidase and nitric oxide synthase. Current Opinion in Immunol 1994; 6:131–139.

    Article  CAS  Google Scholar 

  65. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320:454–456.

    Article  PubMed  CAS  Google Scholar 

  66. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  67. Palmer RMJ, Rees DD, Ashton DS et al. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 1988; 153:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  68. Saran M, Michel C, Bors W. Reaction of NO with O2 −• Implications for the action of endothelium-derived relaxing factor (EDRF). Free Rad Res Comms 1990; 10:221–226.

    Article  CAS  Google Scholar 

  69. Beckman JS, Beckman TW, Chen J et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  70. Yang G, Candy TEG, Boaro M et al. Free radical yields from the homolysis of peroxynitrous acid. Free Rad Biol Med 1992; 12:327–330.

    Article  PubMed  CAS  Google Scholar 

  71. Crow JP, Spruell C, Chen J et al. On the pH-dependent yield of hydroxyl radical products from peroxynitrite. Free Rad Biol Med 1994; 16:331–338.

    Article  PubMed  CAS  Google Scholar 

  72. Beckman JS, Ischiropoulos H, Zhu L et al. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992; 298:438–445.

    Article  PubMed  CAS  Google Scholar 

  73. Tsai JM, Harrison JG, Martin JC et al. Role of conformation of peroxynitrite anion (ONOO) in its stability and toxicity. J Am Chem Soc 1994; 116:4115–4116.

    Article  CAS  Google Scholar 

  74. Beckman JS, Chen J, Ischiropoulos H et al. Oxidative chemistry of peroxynitrite. Methods Enzymol 1994; 233:229–240.

    Article  PubMed  CAS  Google Scholar 

  75. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Rad Res Comms 1993; 18:195–199.

    Article  CAS  Google Scholar 

  76. Goldstein S, Czapski G. The reaction of NO with O2 −• and HO2 : a pulse radiolysis study. Free Rad Biol Med 1995; 19:505–510.

    Article  PubMed  CAS  Google Scholar 

  77. Saran M, Bors W. Pulse radiolysis for investigation of nitric oxide-related reactions. In: Packer L, ed. Oxygen Radicals in Biological systems, Pt C. Methods Enzymol Academic Press, 1994; 233:20–34.

    Chapter  Google Scholar 

  78. Czapski G, Holcman J, Bielski BHJ. Reactivity of nitric oxide with simple short-lived radicals in aqueous solutions. J Am Chem Soc 1994; 116:11465–11469.

    Article  CAS  Google Scholar 

  79. Noronha-Dutra AA, Epperlein MM, Woolf N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett 1993; 321:59–62.

    Article  PubMed  CAS  Google Scholar 

  80. Koppenol WH. Thermodynamic considerations on the formation of reactive species from, hypochlorite, superoxide and nitrogen monoxide. Could nitrosyl chloride be produced by neutrophils and macrophages? FEBS Lett 1994; 347:5–8.

    Article  PubMed  CAS  Google Scholar 

  81. Dunham AJ, Barkley RM, Sievers RE. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence. Anal Chem 1995; 34:220–224.

    Article  Google Scholar 

  82. Bielski BHJ, Cabelli DE. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int J Radiât Biol 1991; 59:291–319.

    Article  PubMed  CAS  Google Scholar 

  83. Rubanyi GM, Ho EH, Cantor EH et al. Cytoprotective function of nitric oxide: in-activation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 1991; 181:1392–1397.

    Article  PubMed  CAS  Google Scholar 

  84. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298:446–451.

    Article  PubMed  CAS  Google Scholar 

  85. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 1995; 369:131–135.

    Article  PubMed  CAS  Google Scholar 

  86. McCall TB, Boughton-Smith NK, Palmer RMJ et al. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J 1989; 261:293–296.

    PubMed  CAS  Google Scholar 

  87. Rodenas J, Mitjavila MT, Carbonell T. Simultaneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Rad Biol Med 1995; 18:869–875.

    Article  PubMed  CAS  Google Scholar 

  88. Ischiropoulos H, Zhu L, Chen J et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298:431–437.

    Article  PubMed  CAS  Google Scholar 

  89. Carreras MC, Pargament GA, Catz SD et al. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett 1994; 341:65–68.

    Article  PubMed  CAS  Google Scholar 

  90. Assreuy J, Cunha FQ, Epperlein M et al. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania Major. Eur J Immunol 1994; 24:672–676.

    Article  PubMed  CAS  Google Scholar 

  91. Squadrito GL, Pryor WA. The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem-Biol Interac 1995; 96:203–206.

    Article  CAS  Google Scholar 

  92. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995; 57:683–706.

    Article  PubMed  CAS  Google Scholar 

  93. Laurent M, Lepoivre M, Tenu J-P. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J 1996; 314:109–113.

    PubMed  CAS  Google Scholar 

  94. Padmaja S, Huie RE. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 1993; 195:539–544.

    Article  PubMed  CAS  Google Scholar 

  95. Cueto R, Pryor WA. Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy. Vibrational Spectroscopy 1994; 7:97–111.

    Article  CAS  Google Scholar 

  96. Joseph J, Kalyanaraman B, Hyde JS. Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation. Biochem Biophys Res Commun 1993; 192:926–934.

    Article  PubMed  CAS  Google Scholar 

  97. Akaike T, Yoshida M, Miyamoto Y et al. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/NO through a radical reaction. Biochemistry 1993; 32:827–832.

    Article  PubMed  CAS  Google Scholar 

  98. Yoshida M, Akaike T, Wada Y et al. Therapeutic effects of imidazolineoxyl N-oxide against endotoxin shock through its direct nitric oxide-scavenging activity. Biochem Biophys Res Commun 1994; 202:923–930.

    Article  PubMed  CAS  Google Scholar 

  99. Lagercrantz C. Spin trapping of nitric oxide as aminoxyl radicals by its reaction with two species of short-lived radicals derived from azo compounds such as 2,2′-azobisisobutyronitrile and some aliphatic alcohols. Free Rad Res Comms 1993; 19:387–395.

    Article  CAS  Google Scholar 

  100. Gatti RM, Radi R, Augusto O. Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett 1994; 348:287–290.

    Article  PubMed  CAS  Google Scholar 

  101. Roy B, Lepoivre M, Henry Y et al. Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits. Biochemistry 1995; 34:5411–5418.

    Article  PubMed  CAS  Google Scholar 

  102. Janzen EG, Wilcox AL, Manoharan V. Reactions of nitric oxide with phenolic antioxidants and phenoxyl radicals. J Org Chem 1993; 58:3597–3599.

    Article  CAS  Google Scholar 

  103. Eiserich JP, Butler J, Van Der Vliet A et al. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J 1995; 310:745–749.

    PubMed  CAS  Google Scholar 

  104. Bottomley F, Brooks WVF, Clarkson SG et al. Electrophilic behaviour of the coordinated nitrosyl cation. J Chem Soc Comm 1973; 1973:919–920.

    Article  Google Scholar 

  105. Enemark JH, Feltham RD. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Reviews 1974; 13:339–406.

    Article  CAS  Google Scholar 

  106. Huheey JE. Inorganic Chemistry. Harper and Row Pub, 1983, 610–615.

    Google Scholar 

  107. Lipscomb LA, Lee BS, Yu NT. Resonance Raman investigation of nitric oxide bonding in iron porphyrins: detection of the Fe-NO stretching vibration. Inorg Chem 1993; 32:281–286.

    Article  CAS  Google Scholar 

  108. Pombeiro AJL. Coordination chemistry of small unsaturated-N molecules at electron-rich mononuclear centers: cyanamide, organonitriles, nitric oxide and related species. New J Chem 1994; 18:163–174.

    CAS  Google Scholar 

  109. Westre TE, Di Cicco A, Filipponi A, et al. Determination of the Fe-N-O angle in [FeNO]7 complexes using multiple-scattering EXAFS analysis by GNXAS. J Am Chem Soc 1994; 116:6757–6768.

    Article  CAS  Google Scholar 

  110. Saavedra JE, Dumans TM, Flippen-Anderson JL et al. Secondary amine/nitric oxide complex ions, R2N[N(O)NO]. O-functionalization chemistry. J Org Chem 1992; 57:6134–6138.

    Article  CAS  Google Scholar 

  111. Hrabie JA, Klose JR, Wink DA et al. New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem 1993; 58:1472–1476.

    Article  CAS  Google Scholar 

  112. Diodati JG, Quyyumi AA, Hussain N et al. Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelets effect. Thrombosis and Haemostasis 1993; 70:654–658.

    PubMed  CAS  Google Scholar 

  113. Morley D, Keefer LK. Nitric oxide/nucleophile complexes: a unique class of nitric oxide-based vasodilators. J Cardiovasc Pharmacol 1993; 22:S3-S9.

    PubMed  CAS  Google Scholar 

  114. Vanderford PA, Wong J, Chang R et al. Diethylamine/nitric oxide (NO) adduct, an NO donor, produces potent pulmonary and systemic vasodilation in intact newborn lambs. J Cardiovasc Pharmacol 1994; 23:113–119.

    Article  PubMed  CAS  Google Scholar 

  115. Petit J-F, Nicaise N, Lepoivre M et al. Protection of glutathione against the antiproliferative effects of nitric oxide: dependence on kinetics of NO release. Biochem Pharmacol 1996; in press.

    Google Scholar 

  116. Wagner DA, Young VR, Tannenbaum SR. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci USA 1983; 80:4518–4531.

    Article  PubMed  CAS  Google Scholar 

  117. Challis BC, Fernandes MHR, Glover BR et al. Formation of diazopeptides by nitrogen oxides. In: Bartsch H, O’Neill IR, Schulte-Hermann R, eds. Relevance of N-nitroso Compounds to Human Cancer: Exposures and Mechanisms. IARC Scientific Publications No 84, Lyon, France, 1987; 308–314.

    Google Scholar 

  118. Iyengar R, Stuehr DJ, Marletta MA. Macrophages synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 1987; 84:6369–6373.

    Article  PubMed  CAS  Google Scholar 

  119. Mirvish SS, Ramm MD, Babcook DM et al. Lipidic nitrosating agents produced from atmospheric nitrogen dioxide and a nitrosamine produced in vivo from amyl nitrite. In: Bartsche H, O’Neill IK, Schulte-Hermann R, eds. Relevance of N-nitroso Compounds to Human Cancer: Exposures and Mechanisms. IARC Scientific Publications No 84, Lyon, France, 1987; 315–318.

    Google Scholar 

  120. Miwa M, Stuehr DJ, Marletta MA et al. Nitrosation of amines by stimulated macrophages. Carcinogenesis 1987; 8:955–958.

    Article  PubMed  CAS  Google Scholar 

  121. Tannenbaum SR. Endogenous formation of N-nitroso compounds: a current perspective. In: Bartsch H, O’Neill IK, Schulte-Hermann R, eds. Relevance of N-nitroso Compounds to Human Cancer: Exposures and Mechanisms. IARC Scientific Publications No 84, Lyon, France, 1987; 292–296.

    Google Scholar 

  122. Bartsch H, Ohshima H, Pignatelli B. Inhibitors of endogenous nitrosation mechanisms and implications in human cancer prevention. Mutation Res 1988; 202:307–324.

    Article  PubMed  CAS  Google Scholar 

  123. Marletta MA. Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1988; 1:249–257.

    Article  PubMed  CAS  Google Scholar 

  124. Ohshima H, Tsuda M, Adachi H et al. L-arginine-dependent formation of N-nitrosamines by the cytosol of macrophages activated with lipopolysaccharide and interferon-γ. Carcinogenesis 1991; 12:1217–1220.

    Article  PubMed  CAS  Google Scholar 

  125. Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation Res 1994; 305:253–264.

    Article  PubMed  CAS  Google Scholar 

  126. Haswell-Elkins MR, Satarug S, Tsuda M et al. Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutation Res 1994; 305:241–252.

    Article  PubMed  CAS  Google Scholar 

  127. Lewis RS, Tannenbaum SR, Deen WM. Kinetics of N-nitrosation in oxygenated nitric oxide solutions at physiological pH: role of nitrous anhydride and effects of phosphate and chloride. J Am Chem Soc 1995; 117:3933–3939.

    Article  CAS  Google Scholar 

  128. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutation Res 1995; 339:73–89.

    PubMed  CAS  Google Scholar 

  129. Wink DA, Kasprzak KS, Maragos CM et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991; 254:1001–1003.

    Article  PubMed  CAS  Google Scholar 

  130. Nguyen T, Brunson D, Crespi CL et al. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 1992; 89:3030–3034.

    Article  PubMed  CAS  Google Scholar 

  131. De La Bretèche ML, Servy C, Lenfant M et al. Nitration of cathecolamines with nitrogen oxides in mild conditions: a hypothesis for the reactivity of NO in physiological systems. Tetrahedron Let 1994; 35:7231–7232.

    Article  Google Scholar 

  132. Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA 1994; 91:11173–11177.

    Article  PubMed  CAS  Google Scholar 

  133. Eiserich JP, Vossen V, O’Neill CA et al. Molecular mechanisms of damage by excess nitrogen oxides: nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett 1994; 353:53–56.

    Article  PubMed  CAS  Google Scholar 

  134. Van der Vliet A, O’Neill CA, Halliwell B et al. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett 1994; 339:89–92.

    Article  PubMed  Google Scholar 

  135. Beckman JS, Carson M, Smith CD et al. ALS, SOD and peroxynitrite. Nature 1994; 364:584.

    Article  Google Scholar 

  136. Beckman JS, Ye YZ, Anderson PG et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler 1994; 375:81–88.

    Article  Google Scholar 

  137. Szabo G, Salzman AL, Ischiropoulos H. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett 1995; 363:235–238.

    Article  PubMed  CAS  Google Scholar 

  138. Salman-Tabcheh S, Guérin MC, Torreilles J. Nitration of tyrosyl-residues from extra- and intracellular proteins in human whole blood. Free Rad Biol Med 1995; 19:695–698.

    Article  PubMed  CAS  Google Scholar 

  139. Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994; 350:9–12.

    Article  PubMed  CAS  Google Scholar 

  140. Kooy NW, Royall JA, Ye YZ et al. Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Resp Crit Care Med 1995; 151:1250–1254.

    PubMed  CAS  Google Scholar 

  141. Myers PR, Minor RL, Guerra R et al. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocyteine than nitric oxide. Nature 1990; 345:161–163.

    Article  PubMed  CAS  Google Scholar 

  142. Stamler JS, Jaraki O, Osborne J et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 1992; 89:7674–7677.

    Article  PubMed  CAS  Google Scholar 

  143. Stamler JS, Simon DI, Jaraki O et al. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 1992; 89:8087–8091.

    Article  PubMed  CAS  Google Scholar 

  144. Stamler JS, Simon DI, Osborne JA et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89:444–448.

    Article  PubMed  CAS  Google Scholar 

  145. Gaston B, Reilly J, Drazen JM et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 1993; 90:10957–10961.

    Article  PubMed  CAS  Google Scholar 

  146. Wink DA, Nims RW, Darbyshire JF et al. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1994; 7:519–525.

    Article  PubMed  CAS  Google Scholar 

  147. Mohr S, Stamler JS, Brüne B. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 1994; 348:223–227.

    Article  PubMed  CAS  Google Scholar 

  148. Moro MA, Darley-Usmar VM, Goodwin DA et al. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 1994; 91:6702–6706.

    Article  PubMed  CAS  Google Scholar 

  149. Roy B, Du Moulinet d’Hardemare A, Fontecave M. New thionitrites: synthesis, stability, and nitric oxide generation. J Org Chem 1994; 59:7019–7026.

    Article  CAS  Google Scholar 

  150. DeMaster EG, Quast BJ, Redfern B et al. Reaction of nitric oxide with the free sulf-hydryl group of human serum albumin yields a sulfenic acide and nitrous oxide. Biochemistry 1995; 34:11494–11499.

    Article  PubMed  CAS  Google Scholar 

  151. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 1995; 270:28158–28164.

    Article  PubMed  CAS  Google Scholar 

  152. Meyer DJ, Kramer H, Özer N et al. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett 1994; 345:177–180.

    Article  PubMed  CAS  Google Scholar 

  153. Clancy RM, Levartovsky D, Leszczynska-Piziak J et al. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bio-active intermediary. Proc Natl Acad Sci USA 1994; 91:3680–3684.

    Article  PubMed  CAS  Google Scholar 

  154. Gabor G, Allon N. Spectrofluorimetric method for NO determination. Anal Biochem 1994; 220:16–19.

    Article  PubMed  CAS  Google Scholar 

  155. Smith RP, Kruszyna H. Nitroprusside produces cyanide poisoning via a reaction with hemoglobin. J Pharm Exp Ther 1974; 191:557–563.

    CAS  Google Scholar 

  156. Wilcox DE, Kruszyna H, Kruszyna R et al. Effect of cyanide on the reaction of nitroprusside with hemoglobin: relevance to cyanide inference with biological activity of nitroprusside. Chem Res Toxicol 1990; 3:71–76.

    Article  PubMed  CAS  Google Scholar 

  157. Morando PJ, Borgy EB, de Schteingart LM. The reaction of cysteine with pentacyanonitrosylferrate (2-) ion. J Chem Soc Dalton Trans 1981; 435–440.

    Google Scholar 

  158. Butler AR, Calsy-Harrison AM, Glidewell C et al. The pentacyanonitrosylferrate ion — V. The course of the reactions of nitroprusside with a range of thiols. Polyhedron 1988; 7:1197–1202.

    Article  CAS  Google Scholar 

  159. Butler AR, Glidewell C, Li M-H. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988; 32:335–393.

    Article  CAS  Google Scholar 

  160. Butler AR, Calsy AM, Johnson IL. Enzyme inhibition by sodium nitroprusside. Polyhedron 1990; 9:913–919.

    Article  CAS  Google Scholar 

  161. Butler AR, Williams DLH. The physiological role of nitric oxide. Chem Soc Rev 1993:233–241.

    Google Scholar 

  162. Flitney FW, Megson IL, Clough T et al. Nitrosylated iron-suphur clusters, a novel class of nitrovasodilator: studies on the rat isolated tail artery. J Physiol 1990; 430:42P.

    Google Scholar 

  163. Flitney FW, Megson IL, Flitney DE et al. Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery. Br J Pharmacol 1992; 107:842–848.

    PubMed  CAS  Google Scholar 

  164. Hogg N, Darkley-Usmar VM, Wilson MT et al. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J 1992; 281:419–424.

    PubMed  CAS  Google Scholar 

  165. Chamulitrat W, Jordan SJ, Mason RP et al. Nitric oxide formation during light-induced decomposition of phenol N-tert-butylnitrone. J Biol Chem 1993; 268:11520–11527.

    PubMed  CAS  Google Scholar 

  166. Pou S, Anderson DE, Surichamorn W et al. Biological studies of a nitroso compound that release nitric oxide upon illumination. Mol Pharmacol 1994; 46:709–715.

    PubMed  CAS  Google Scholar 

  167. Ignarro LJ, Edwards JC, Gruetter DY et al. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 1980; 110: 275–278.

    Article  PubMed  CAS  Google Scholar 

  168. Mathews WR, Kerr SW. Biological activity of nitrosothiols: the role of nitric oxide. J Pharmacol Exp Ther 1993; 267:1529–1537.

    PubMed  CAS  Google Scholar 

  169. McAninly J, Williams DLH, Askew SC et al. Metal ion catalysis in nitrosothiols (RSNO) decomposition. J Chem Soc Chem Commun 1993:1758–1759.

    Google Scholar 

  170. Askew SC, Barnett DJ, McAninly J et al. Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols (RSNO) J Chem Soc Perkin Trans 2 1995:741–745.

    Google Scholar 

  171. Sexton DJ, Muruganandam A, McKenney DJ et al. Visible light photochemical release of nitric oxide from S-nitrosoglutathione: potential photochemo-therapeutic applications. Photochem Photobiol 1994; 59:463–467.

    Article  PubMed  CAS  Google Scholar 

  172. Singh RJ, Hogg N, Joseph J et al. Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production. FEBS Lett 1995; 360:47–51.

    Article  PubMed  CAS  Google Scholar 

  173. Makings LR, Tsien RY. Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol Chem 1994; 269:6282–6285.

    PubMed  CAS  Google Scholar 

  174. Vithayathil AJ, Ternberg JL, Commoner B. Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 1965; 207:1246–1249.

    Article  PubMed  CAS  Google Scholar 

  175. Woolum JC, Tiezzi E, Commoner B. Electron spin resonance of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta 1968; 160:311–320.

    PubMed  CAS  Google Scholar 

  176. Woolum JC, Commoner B. Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 1970; 201:131–140.

    PubMed  CAS  Google Scholar 

  177. Vanin AF. Identification of divalent iron complexes with cysteine in biological systems by the EPR method. Biokhimiya 1967; 32:277–282 (English translation 228–232).

    Google Scholar 

  178. Vanin AF, Vakhnina LV, Chetverikov AG. Nature of the EPR signals of a new type found in cancer tissues. Biofizika 1970; 15:1044–1051 (English translation 1082–1089).

    Google Scholar 

  179. Maruyama T, Kataoka N, Nagase S et al. Identification of three-line electron spin resonance signal and its relationship to ascites tumors. Cancer Res 1971; 31:179–184.

    PubMed  CAS  Google Scholar 

  180. Arnold WP, Mittal CK, Katsuki S et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74:3203–3207.

    Article  PubMed  CAS  Google Scholar 

  181. Murad F, Mittal CK, Arnold WP et al. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotides Res 1978; 9:145–158.

    CAS  Google Scholar 

  182. Ignarro LJ, Buga GM, Wood KS et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84:9265–9269.

    Article  PubMed  CAS  Google Scholar 

  183. Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelets adhesion to vascular endothelium. Biochem Biophys Res Commun 1987; 148:1482–1489.

    Article  PubMed  CAS  Google Scholar 

  184. Moncada S, Radomski MW, Palmer RMJ. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 1988; 37:2495–2501.

    Article  PubMed  CAS  Google Scholar 

  185. Moncada M, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38:1709–1715.

    Article  PubMed  CAS  Google Scholar 

  186. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Ann Rev Pharmacol Toxicol 1990; 30:535–560.

    Article  CAS  Google Scholar 

  187. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 1991; 41:485–490.

    Article  PubMed  CAS  Google Scholar 

  188. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109–142.

    PubMed  CAS  Google Scholar 

  189. Craven PA, DeRubertis FR. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemoproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 1978; 253:8433–8443.

    PubMed  CAS  Google Scholar 

  190. Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of NO catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 1979; 254:8213–8222.

    PubMed  CAS  Google Scholar 

  191. Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994; 33:5636–5640.

    Article  PubMed  CAS  Google Scholar 

  192. Stone JR, Marletta MA. Heme stoichiometry of heterodimeric soluble guanylate cyclase. Biochemistry 1995; 34:14668–14674.

    Article  PubMed  CAS  Google Scholar 

  193. Stone JR, Marletta MA. The ferrous heme of soluble guanylate cyclase: formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 1995; 34:16397–16403.

    Article  PubMed  CAS  Google Scholar 

  194. Stone JR, Sands RH, Dunham WR et al. Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinated nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 1995; 207:572–577.

    Article  PubMed  CAS  Google Scholar 

  195. Richter-Addo GB, Legzdins P. Metal nitrosyls. Oxford University Press, Oxford, UK, 1992.

    Google Scholar 

  196. Taylor KC. Nitric oxide catalysis in automobile exhaust systems. Catal Rev-Sci Eng 1993; 35:457–481.

    Article  CAS  Google Scholar 

  197. Coichev N, Van Eldik R. Metal catalyzed atmospheric oxidation reactions. A challenge to coordination chemistry. New J Chem 1994; 18:123–131.

    CAS  Google Scholar 

  198. Proust A, Gouzerh P, Robert F. Reactivity of acetone oxime towards oxomolyb-denum(VI) complexes. Part 2. Synthesis, crystal structures and reactivity of Molybdenum nitrosyl complexes. J Chem Soc Dalton Trans 1994:825–833.

    Google Scholar 

  199. Qiu S, Ohnishi R, Ichikawa M. Formation and interaction of carbonyls and nitrosyls on Gold(I) in ZSM-5 zeolite catalytically active in NO reduction with CO. J Phys Chem 1994; 98:2719–2721.

    Article  CAS  Google Scholar 

  200. Beinert H, Dervartanian DV, Hemmerich P et al. On the ligand field of redox active non-heme iron in proteins. Biochim Biophys Acta 1965; 96:530–533.

    PubMed  CAS  Google Scholar 

  201. Gans P. Reaction of nitric oxide with cobalt (II) ammine complexes and other reducing agents. J Chem Soc 1967; 1967 A:943–946.

    Google Scholar 

  202. Enemark JH, Feltham RD. Stereochemical control of valence and its application to the reduction of coordinated NO and N2. Proc Natl Acad Sci USA 1972; 69:3534–3536.

    Article  PubMed  CAS  Google Scholar 

  203. McCleverty JA. Reactions of nitric oxide coordinated to transition metals. Chem Rev 1979; 79:53–76.

    Article  CAS  Google Scholar 

  204. Wade RS, Castro CE. Redox reactivity of iron(III) porphyrins and heme proteins with nitric oxide. Nitrosyl transfer to carbon, oxygen, nitrogen, and sulfur. Chem Res Toxicol 1990; 3:289–291.

    Article  PubMed  CAS  Google Scholar 

  205. Doyle MP, Mahapatro SN, Broene RD et al. Oxidation and reduction of hemoproteins by trioxodinitrate(II). The role of nitrosyl hydride and nitrite. J Am Chem Soc 1988; 110:593–599.

    Article  CAS  Google Scholar 

  206. Castro CE, Bartnicki EW. The interconversion of nucleic acid bases by iron(III) porphyrins and nitric oxide. J Org Chem 1994; 59:4051–4052.

    Article  CAS  Google Scholar 

  207. Ruggiero CE, Carrier SM, Tolman WB. Reductive disproportionation of NO mediated by copper complexes: modeling N2O generation by copper proteins and heterogenous catalysts. Angew Chem Int Ed Engl 1994; 33:895–897.

    Article  Google Scholar 

  208. McNeil DAC, Raynor JB, Symons MCR. Structure and reactivity of transition-metal complexes with polyatomic ligands. Part 1.Electron spin resonance spectra of [Mn(CN)5NO]2− and [Fe(CN)5NO]3−. J Chem Soc 1965; 1965:410–415.

    Article  Google Scholar 

  209. Kon H, Kataoka N. Electron paramagnetic resonance of nitric oxide-protoheme with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 1969; 8:4757–4762.

    Article  PubMed  CAS  Google Scholar 

  210. Yonetani T, Yamamoto H, Erman JE et al. Electron properties of hemoproteins. V. Optical and electron paramagnetic characteristics of nitric oxide derivatives of metalloporphyrin-apo-hemoprotein complexes. J Biol Chem 1972; 247:2447–2455.

    PubMed  CAS  Google Scholar 

  211. Tsai A.-L. How does NO activates hemeproteins? FEBS Lett 1994; 341:141–145.

    Article  PubMed  CAS  Google Scholar 

  212. Traylor TG, Sharma VS. Why NO? Biochemistry 1992; 31:2847–2849.

    Article  PubMed  CAS  Google Scholar 

  213. Van Voorst JDW, Hemmerich P. Electron spin resonance of Fe(CN)5NO3− and Fe(CN)5NOH2−. J Chem Phys 1966; 45:3914–3913.

    Article  Google Scholar 

  214. Swinehart JH. The nitroprusside ion. Coord Chem Rev 1967; 2:385–402.

    Article  CAS  Google Scholar 

  215. McDonald CC, Phillips WD, Mower HF. An electron spin resonance of some complexes of iron, nitric oxide, and anionic ligands. J Am Chem Soc 1965; 87:3319–3326.

    Article  CAS  Google Scholar 

  216. Henry Y, Ducrocq C, Drapier J-C et al. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J. 1991; 20:1–15.

    Article  PubMed  CAS  Google Scholar 

  217. Henry Y, Lepoivre M, Drapier J-C et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993; 7:1124–1134.

    PubMed  CAS  Google Scholar 

  218. Henry YA, Singel DJ. Metal-nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. John Wiley and Sons, 1996:357–372.

    Google Scholar 

  219. Singel SJ, Lancaster JR. Electron paramagnetic resonance spectroscopy and nitric oxide biology. In: Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. John Wiley and Sons, 1996:341–356.

    Google Scholar 

  220. Czapski G, Goldstein S. The role of the reactions of NO with superoxide and oxygen in biological systems: a kinetic approach. Free Rad Biol Med 1995; 19:785–794.

    Article  PubMed  CAS  Google Scholar 

  221. Goldstein S, Czapski G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants. The nature of oxidizing intermediates. J Am Chem Soc 1995; 117:12078–12084.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Henry, Y.A., Ducastel, B., Guissani, A. (1997). Basic Chemistry of Nitric Oxide and Related Nitrogen Oxides. In: Nitric Oxide Research from Chemistry to Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1185-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1185-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8503-8

  • Online ISBN: 978-1-4613-1185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics