Skip to main content

Autonomic Neural Control of Cardiac Function

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

Abstract

The various structures in the heart are regulated by both divisions of the autonomic nervous system. The sympathetic division is facilitatory, whereas the parasympathetic is inhibitory. The central nervous system controls the relative levels of sympathetic and vagal activity, usually in a reciprocal fashion; that is, as sympathetic activity increases, parasympathetic activity usually diminishes, and vice versa. In certain regions of the heart, such as the nodal tissues, parasympathetic effects tend to predominate over sympathetic influences. However, in other regions, such as the ventricular myocardium, the effects of the sympathetic division are usually much greater than those of the parasympathetic division. When both divisions are active simultaneously, the sympathetic and vagal effects usually do not summate algebraically. Instead, nonlinear sympathetic-parasympathetic interactions are prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy MN, Martin PJ: Neural control of the heart. In: Berne RM (ed) Handbook of Physiology. Section 2: Cardiovascular System. Vol I. Bethesda: American Physiological Society, 1979, p 581–620.

    Google Scholar 

  2. Levy MN, Martin PJ: Neural control of heart rate and atrioventricular conduction. In: Abboud FM, Fozzard HA, Gilmore JP, Reis DJ (eds) Disturbances in Neurogenic Control of the Circulation. Bethesda: American Physiological Society, 1981, pp 205–216.

    Google Scholar 

  3. Löffelholz K: Release of acetylcholine in the isolated heart. Am J Physiol 240: H431–H440, 1981.

    PubMed  Google Scholar 

  4. Watanabe AM, Jones LR, Manalan AS, Besch HR Jr: Cardiac autonomic receptors. Recent concepts from radiolabeled ligand-binding studies. Circ Res 50: 161–174, 1982.

    CAS  Google Scholar 

  5. Randall WC: Nervous Control of Cardiovascular Function. New York: Oxford University Press, 1984.

    Google Scholar 

  6. Levy MN: Cardiac sympathetic-parasympathetic interactions. Fed Proc 43: 2598–2602, 1984.

    PubMed  CAS  Google Scholar 

  7. Mizeres MJ: The origin and course of the cardioaccelerator fibers in the dog. Anat Record 132: 261–279, 1958.

    Article  CAS  Google Scholar 

  8. Hopkins DA, Armour JA: Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol 229: 186–198, 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Randall WC, Ardell JL, Becker DM: Differential responses accompanying sequential stimulation and ablation of vagal branches to dog heart. Am J Physiol 249: H133–H140, 1985.

    PubMed  CAS  Google Scholar 

  10. Brandys JC, Randall WC, Armour JA: Functional anatomy of the canine mediastinal cardiac nerves located at the base of the heart. Can J Physiol Pharmacol 64: 152–162, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA: Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol 57: 299–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Spyer KM: Baroreceptor control of vagal preganglionic activity. In: Brooks CM, Koizimi K, Sato A (eds) Integrative Functions of the Autonomic Nervous System. Tokyo, Univ of Tokyo Press, 1979, pp 283–292.

    Google Scholar 

  13. Weiss GK, Priola DV: Brainstem sites for activation of vagal cardioaccelerator fibers in the dog. Am J Physiol 223: 300–304, 1972.

    PubMed  CAS  Google Scholar 

  14. Noble D: The Initiation of the Heartbeat, Second Edition. Oxford: Clarendon Press, 1979.

    Google Scholar 

  15. Warner HR, Cox A: A mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 17: 349–355, 1962.

    PubMed  CAS  Google Scholar 

  16. Axelrod J, Weinshilboum R: Catecholamines, N Engl J Med 287: 237–242, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Masuda Y, Levy MN: Heart rate as a determinant of the decay rate of the cardiac inotropic response to sympathetic nervous activity. Can J Physiol Pharmacol 61: 1374–1381, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Masuda Y, Levy MN: Heart rate modulates the disposition of neurally released norepinephrine in cardiac tissues. Circ Res 57: 19–27, 1985.

    PubMed  CAS  Google Scholar 

  19. Matsuda Y, Masuda Y, Levy MN: The effects of cocaine and metanephrine on the cardiac responses to sympathetic nerve stimulation in dogs. Circ Res 45: 180–187, 1979.

    PubMed  CAS  Google Scholar 

  20. Matsuda Y, Masuda Y, Blattberg B, Levy MN: The effects of cocaine, chlorpheniramine and tripelennamine on the cardiac responses to sympathetic nerve stimulation. Eur J Pharmacol 63: 25–33, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenblueth A: The chemical mediation of autonomic nervous impulses as evidenced by summation of responses. Am J Physiol 102: 12–38, 1932.

    CAS  Google Scholar 

  22. Levy MN, Ng ML, Zieske H: Functional distribution of the peripheral cardiac sympathetic pathways. Circ Res 19: 650–661, 1966.

    PubMed  CAS  Google Scholar 

  23. Randall WC, Priola DV, Ulmer RH: A functional study of the distribution of cardiac sympathetic nerves. Am J Physiol 205: 1227–1231, 1963.

    PubMed  CAS  Google Scholar 

  24. James TN, Spence CA: Distribution of Cholinesterase within the sinus node and AV node of the human heart. Anat Record 155: 151–162, 1966.

    Article  CAS  Google Scholar 

  25. Brown GL, Eccles JE: The action of a single vagal volley on the rhythm of the heart beat. J Physiol (London) 82: 211–240, 1934.

    PubMed  CAS  Google Scholar 

  26. Iano TL, Levy MN, Lee MH: An acceleratory component of the parasympathetic control of heart rate. Am J Physiol 224: 997–1005, 1973.

    Google Scholar 

  27. Jalife J, Moe GK: Phasic effects of vagal stimulation on pacemaker activity of the isolated sinus node of the young cat. Circ Res 45: 595–608, 1979.

    PubMed  CAS  Google Scholar 

  28. Spear JF, Kronhaus KD, Moore EN, Kline RP: The effect of brief vagal stimulation on the isolated rabbit sinus node. Circ Res 44: 75–88, 1979.

    PubMed  CAS  Google Scholar 

  29. Levy MN, Martin PJ, Iano T, Zieske H: Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ Res 25: 303–314, 1969.

    PubMed  CAS  Google Scholar 

  30. Levy MN, Iano T, Zieske H: Effects of repetitive bursts of vagal activity on heart rate. Circ Res 30: 186–195, 1972.

    PubMed  CAS  Google Scholar 

  31. Yang T, Jacobstein MD, Levy MN: Synchronization of automatic cells in S-A node during vagal stimulation in dogs. Am J Physiol 246: H585–H591, 1984.

    PubMed  CAS  Google Scholar 

  32. Yang T, Jacobstein MD, Levy MN: Sustained increases in heart rate induced by timed repetition of vagal stimulation in dogs. Am J Physiol 249: H703–H709, 1985.

    PubMed  CAS  Google Scholar 

  33. James TN: The sinus node as a servomechanism. Circ Res 32: 307–313. 1973.

    PubMed  CAS  Google Scholar 

  34. Hariman RJ, Hoffman RB, Naylor RE: Electrical activity from the sinus node region in conscious dogs. Circ Res 47: 775–791, 1980.

    PubMed  CAS  Google Scholar 

  35. Levy MN, Zieske H: Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27: 465–470, 1969.

    PubMed  CAS  Google Scholar 

  36. Yang T, Levy MN: The phase-dependency of the cardiac chronotropic respones to vagal stimulation as a factor in sympathetic-vagal interactions. Circ Res 54: 703–710, 1984.

    PubMed  CAS  Google Scholar 

  37. Salata JJ, Gill RM, Gilmour RF, Jr, Zipes DP: Effects of sympathetic tone on vagally induced phasic changes in heart rate and atrioventricular node conduction in the anesthetized dog. Circ Res 58: 584–594, 1986.

    PubMed  CAS  Google Scholar 

  38. Stuesse SL, Wallick DW, Levy MN: Autonomic control of right atrial contractile strength in the dog. Am J Physiol 236: H860–H865, 1979.

    PubMed  CAS  Google Scholar 

  39. Levy MN, Blattberg B: Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 38: 81–85, 1976.

    PubMed  CAS  Google Scholar 

  40. Levy MN: Neural control of the heart: Sympathetic-vagal interactions. In: Baan J, Noordergraaf A, Raines J (eds) Cardiovascular System Dynamics. Cambridge: MIT Press, 1978, pp 365–370.

    Google Scholar 

  41. Muscholl E: Peripheral muscarinic control of norepinephrine release in the cardiovascular system. Am J Physiol 239: H713–H720, 1980.

    PubMed  CAS  Google Scholar 

  42. Lavallée M, de Champlain J, Nadeau RA, Yamaguchi N: Muscarinic inhibition of endogenous myocatdial catecholamine liberation in the dog. Can J Physiol Pharmacol 56: 642–649, 1978.

    Article  PubMed  Google Scholar 

  43. Mancia G, Bonazzi O, Pozzoni L, Ferrari A, Gardumi M, Gregorini L, Perondi R: Baroreceptor control of atrioventricular conduction in man. Circ Res 44: 752–758, 1979.

    PubMed  CAS  Google Scholar 

  44. Borst C, Karemaker JM, Danning AJ: Prolongation of atrioventricular conduction time by electrical stimu¬lation of the carotid sinus nerves in man. Circulation 65: 432–434, 1982.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas JX Jr, Randall WC: Autonomic influences on atrioventricular conduction in conscious dogs. Am J Physiol 244: H102–H108, 1983.

    PubMed  Google Scholar 

  46. Hageman GR, Randall WC, Armour JA: Direct and reflex cardiac bradydysrhythmias from small vagal nerve stimulations. Am Heart J 89: 338–348, 1975.

    Article  PubMed  CAS  Google Scholar 

  47. O’Toole MF, Ardell JL, Randall WC: Functional interdependence of discrete vagal projections to SA and AV nodes. Am J Physiol 251: H398–H404, 1986.

    PubMed  Google Scholar 

  48. Wallick DW, Stuesse SL, Masuda Y: Sympathetic and periodic vagal influences on antegrade and retrograde conduction through the canine atrioventricular node. Circulation 73: 830–836, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Prystowsky EN, Jackman WM, Rinkenberger RL, Heger JJ, Zipes DP: Effect of autonomie blockade on ventricular refractoriness and atrioventricular nodal conduction in humans. Circ Res 49: 511–518, 1981.

    PubMed  CAS  Google Scholar 

  50. Spear JF, Moore EN: Influence of brief vagal and stellate nerve stimulation on pacemaker activity and conduction within the atrioventricular conduction system of the dog. Circ Res 32: 27–41, 1973.

    PubMed  CAS  Google Scholar 

  51. Levy MN, Martin PJ, Iano T, Zieske H: Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am J Physiol 218: 1256–1262, 1970.

    PubMed  CAS  Google Scholar 

  52. Martin PJ: Dynamic vagal control of atrial-ventricular conduction: Theoretical and experimental studies. Ann Biomed Eng 3: 275–295, 1975.

    Article  PubMed  CAS  Google Scholar 

  53. Levy MN, Martin PJ, Zieske H, Adler D: Role of positive feedback in the atrioventricular nodal Wenckebach phenomenon. Circ Res 34: 697–710, 1974.

    PubMed  CAS  Google Scholar 

  54. Zipes DP, Mihalick MJ, Robbins GT: Effects of selective vagal and stellate ganglion stimulation on atrial refractoriness. Cardiovasc Res 8: 647–655, 1974.

    Article  PubMed  CAS  Google Scholar 

  55. Cagin NA, Kunstadt D, Wolfish P, Levitt B: The influence of heart rate on the refractory period of the atrium and AV conducting system. Am Heart J 85: 358–366, 1973.

    Article  Google Scholar 

  56. Schwartz PJ, Verrier RL, Lpwn B: Effect of stellectomy and vagotomy on ventricular refractoriness in dogs. Circ Res 40: 536–540, 1977.

    PubMed  CAS  Google Scholar 

  57. Valiin HO: Autonomous influence on sinus node and AV node function in the elderly without significant heart disease: Assessment with electrophysiological and autonomic tests. Cardiovasc Res 14: 206–216, 1980.

    Article  Google Scholar 

  58. Martins JB, Zipes DP: Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46: 100–110, 1980.

    PubMed  CAS  Google Scholar 

  59. Kolman BS, Verrier RL, Lown B: Effect of vagus nerve stimulation upon excitability of the canine ventricle. Role of sympathetic-parasympathetic interac-tions. Am J Cardiol 37: 1041–1045, 1976.

    CAS  Google Scholar 

  60. Blair RW, Shimizu T, Bishop VS: The role of vagal afferents in the reflex control of the left ventricular refractory period in the cat. Circ Res 46: 378–386, 1980.

    PubMed  CAS  Google Scholar 

  61. Waxman MB, Wald RW: Termination of ventricular tachycardia by an increase in cardiac vagal drive. Circulation 56: 385–391, 1977.

    PubMed  CAS  Google Scholar 

  62. De Geest H, Levy MN, Zieske H, Lipman RI: Depression of ventricular contractility by stimulation of the vagus nerves. Circ Res 17: 222–235, 1965.

    Google Scholar 

  63. Randall WC, Wechsler JB, Pace JB, Szentivanyi M: Alterations in myocardial contractility during stimulation of the cardiac nerves. Am J Physiol 214: 1205–1212, 1968.

    PubMed  CAS  Google Scholar 

  64. Wiggers CJ: The physiology of the mammalian auricle. II. The influence of the vagus nerves on the fractionate contraction of the right auricle. Am J Physiol 42: 133–140, 1917.

    Google Scholar 

  65. Martin P: Atrial inotropic responses to brief vagal stimuli: Frequency-force interactions. Am J Physiol 239: H333–H341, 1980.

    PubMed  CAS  Google Scholar 

  66. Martin PJ, Ishikawa S: Dynamic interaction between brief vagal stimulation and heart period on atrial contractility. J Auton Nerv Syst 17: 249–262, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Martin P, Levy MN, Matsuda Y: Fade of the cardiac responses during tonic vagal stimulation. Am J Physiol 243: 4219–4225, 1982.

    Google Scholar 

  68. Loeb JM, Dalton DP, Moran JM: Sensitivity differences of SA and AV node to vagal stimulation: Attenuation of vagal effects at SA node. Am J Physiol 241: H684–H690, 1981.

    PubMed  CAS  Google Scholar 

  69. Jalife J, Hamilton AJ, Moe GK: Desensitization of the cholinergic receptor at the sinoatrial cell of the kitten. Am J Physiol 238: H439–H448, 1980.

    PubMed  CAS  Google Scholar 

  70. Korner PI: Central nervous control of autonomic cardiovascular function. In: Berne RM (ed) Handbook of Physiology. Section 2: The Cardiovascular System. Volume 1: The Heart, Bethesda: American Physiological Society, 1979, pp 691–739.

    Google Scholar 

  71. Brown AM: Cardiac reflexes. In Handbook of Physiology. Section 2: Cardiovascular System, Vol 1. Bethesda: American Physiological Society, 1979, pp 677–690.

    Google Scholar 

  72. Coleridge JCG, Coleridge HM: Chemoreflex regulation of the heart. In: Handbook of Physiology. Section 2: Cardiovascular System, Vol 1. Bethesda: American Physiological Society 1979, pp 653–676.

    Google Scholar 

  73. Downing SE: Baroreceptor regulation of the heart. In: Handbook of Physiology. Section 2: Cardiovascular System, Vol 1. Bethesda: American Physiological Society, 1979, pp 621–652.

    Google Scholar 

  74. Spyer KM: Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88: 23–124, 1981.

    Article  Google Scholar 

  75. Bishop VS, Malliani A, Thoren P: Cardiac mechano-receptors. In: Shepherd JT, Abboud FM (eds) Hand¬book of Physiology. Section 2: Cardiovascular System, Vol III. Bethesda: American Physiological Society, 1983, pp 497–555.

    Google Scholar 

  76. Mark AL, Mancia G: Cardiopulmonary baroreflexes in humans. In: Shepherd JT, Abboud FM (eds) Handbook of Physiology. Section 2: Cardiovascular System, Vol III. Bethesda: American Physiological Society, 1983, pp 795–813.

    Google Scholar 

  77. Bainbridge FA: The influence of venous filling upon the rate of the heart. J Physiol (London) 50: 65–84, 1915.

    PubMed  CAS  Google Scholar 

  78. Vatner SF,Boettcher DH: Regulation of cardiac output by stroke volume and heart rate in conscious dogs. Circ Res 42: 557–561, 1978.

    PubMed  CAS  Google Scholar 

  79. Daly MB, Angell-James JE, Eisner R: Role of carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet 1: 764–767, 1979.

    Article  PubMed  CAS  Google Scholar 

  80. Berk JL, Levy MN: Profound reflex bradycardia produced by transient hypoxia or hypercapnia in man. Eur Surg Res 9: 75–84, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levy, M.N., Martin, P.J. (1989). Autonomic Neural Control of Cardiac Function. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics