Skip to main content

Neural organisation and control of the baroreceptor reflex

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 88

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 88))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AN:

Aortic nerve

BVM:

Preganglionic bronchomotor neurone

C:

Cervical spinal cord

CVM:

Preganglionic cardiac vagal motoneurone

DLF:

Dorsolateral funiculus

DLH:

Di-homocysteic acid

DNV:

Dorsal motor nucleus of the vagus

ECG:

Electrocardiogram

5HT:

5-hydroxytryptamine

IC:

Intercostal

IML:

Intermediolateral cell column

IMM:

Intermediomedial cell column

LRN:

Lateral reticular nucleus

NA:

Nucleus ambiguus

NPR:

Paramedian reticular nucleus

NTS:

Nucleus of the tractus solitarius

SN:

Sinus nerve

T:

Thoracic spinal cord

TS:

Tractus solitarius

References

  • Abrahams VC, Hilton SM, Zbrozyna A (1960) Active muscle vasodilatation. Produced by stimulation of the brainstem: its significance in the defence reaction. J Physiol (Lond) 154:491–513

    PubMed  Google Scholar 

  • Achari NK, Downman CBB (1969) Autonomic responses evoked by stimulation of fastigial nuclei in the anaesthetized cat. J Physiol (Lond) 204:130

    Google Scholar 

  • Achari NK, Downman CBB (1970) Autonomic effector responses to stimulation of nucleus fastigius. J Physiol (Lond) 210:637–650

    PubMed  Google Scholar 

  • Achari NK, Downman CBB (1978) Inhibition of reflex bradycardia by stimulation of cerebral motor cortex. Brain Res 150:198–200

    Article  PubMed  Google Scholar 

  • Achari NK, Al-Ubaidy SS, Downman CBB (1973) Cardiovascular responses elicited by fastigial and hypothalamic stimulation in conscious cats. Brain Res 60:439–447

    Article  PubMed  Google Scholar 

  • Achari NK, Al-Ubaidy SS, Downman CBB (1978) Spinal sympathoexcitatory pathways activated by stimulating fastigial nuclei, hypothalamus and lower brain stem in cats. Exp Neurol 62:230–240

    Article  PubMed  Google Scholar 

  • Adair JR, Manning JW (1975) Hypothalamic modulation of baroreceptor afferent unit activity. Am J Physiol 229:1357–1364

    PubMed  Google Scholar 

  • Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol (Lond) 74:115–133

    Google Scholar 

  • Agostoni E, Chinnock JE, Daly M de B, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol (Lond) 135:182–205

    PubMed  Google Scholar 

  • Akimoto H, Saito Y (1966) Synchronizing and desynchronizing influences and their interactions on cortical and thalamic neurones. Prog Brain Res 21A:323–351

    Google Scholar 

  • Alanis J, Mascher D, Miyamoto J (1966) Hypothalamic stimulation and the inhibition of the activity of cardiac sympathetic and parasympathetic nerves. Arch Int Physiol Biochim 74:766–784

    PubMed  Google Scholar 

  • Alexander RS (1945) The effects of blood flow and anoxia on spinal cardiovascular centers. Am J Physiol 143:698–708

    Google Scholar 

  • Alexander RS (1946) Tonic and reflex functions of medullary sympathetic centers. J Neurophysiol 9:205–217

    Google Scholar 

  • Amendt K, Czachurski J, Dembowsky K, Seller H (1978) Localisation of brainstem neurons projecting to the intermediolateral nucleus in the cat. Pfluegers Arch 373:76

    Google Scholar 

  • Anderson FD, Berry OM (1956) An oscillographic study of the central pathways of the vagus nerve in the cat. J Com Neurol 106:163–181

    Article  Google Scholar 

  • Angell-James JE (1971a) The effects of altering mean pressure, pulse pressure and pulse-frequency on the impulse activity in baroreceptor fibres from the aortic arch and right subclavian artery in the rabbit. J Physiol (Lond) 214:65–88

    PubMed  Google Scholar 

  • Angell-James JE (1971b) The responses of aortic arch and right subclavian baroreceptors to changes in non-pulsatile pressure and their modification by hypothermia. J Physiol (Lond) 214:201–223

    PubMed  Google Scholar 

  • Angell-James JE, Daly M de B (1969) Cardiovascular responses in apnoeic asphyxia; role of arterial chemoreceptors and the modification of their effects by a pulmonary inflation reflex. J Physiol (Lond) 201:87–104

    PubMed  Google Scholar 

  • Angell-James JE, Daly M de B (1970) Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog. J Physiol (Lond) 209:257–293

    PubMed  Google Scholar 

  • Angell-James JE, Daly M de B (1973) The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors, in the nasal mucosa affecting respiration and pulse interval in the dog. J Physiol (Lond) 229:113–149

    Google Scholar 

  • Angell-James JE, Daly M de B (1975a) Some aspects of upper respiratory tract reflexes. Acta Otolaryngol (Stockh) 79:242–251

    PubMed  Google Scholar 

  • Angell-James JE, Daly M de B (1975b) Role of the arterial chemoreceptors in the control of the cardiovascular responses to breath-hold diving. In: Purves MJ (ed) The peripheral arterial chemoreceptors. Cambridge University Press, London, pp 387–405

    Google Scholar 

  • Angell-James JE, Daly M de B (1978) The effects of artificial lung inflation on reflexly induced bradycardia associated with apnoea in the dog. J Physiol (Lond) 274:349–366

    PubMed  Google Scholar 

  • Angell-James JE, Daly M de B, Elsner R (1978) Arterial baroreceptor reflexes in the seal and their modification during experimental dives. Am J Physiol 234:730–739

    Google Scholar 

  • Anrep GV, Pascual W, Rössler R (1936a) Respiratory variations of heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond (Biol) 119:191–217

    Google Scholar 

  • Anrep GV, Pascual W, Rössler R (1936b) Respiratory variations of the heart-rate. II. The central mechanism of respiratory arrhythmia and the inter-relationships between central and reflex mechanisms. Proc R Soc Lond (Biol) 119:218–230

    Google Scholar 

  • Åström KE (1952) On the central course of afferent fibres in the trigeminal, glossopharyngeal and vagal nerves and their nuclei in the mouse. Acta Physiol Scand (Suppl 106) 29:209–320

    Google Scholar 

  • Bach LMN (1952) Relationships between bulbar respiratory, vasomotor and somatic facilitatory and inhibiting areas. Am J Physiol 171:417–435

    PubMed  Google Scholar 

  • Baertschi AJ, Munzer RF, Ward DG, Johnson RN, Gann DS (1975) Right and left arterial B-fibre input to the medulla of the cat. Brain Res 98:189–193

    Article  PubMed  Google Scholar 

  • Bagshaw RJ, Iizuka M, Peterson LH (1971) Effect of interaction of the hypothalamus and the carotic sinus mechanoreceptors system on the renal haemodynamics in the anaesthetized dog. Circ Res 29:569–585

    PubMed  Google Scholar 

  • Barker JL, Crayton JW, Nicoll RA (1971) Supraoptic neurosecretory cells: autonomic modulation. Science 171:206–207

    PubMed  Google Scholar 

  • Barman SM, Gebber GL (1978a) Tonic sympathoinhibition in the baroreceptor denervated cat. Proc Soc Exp Biol Med 157:648–655

    PubMed  Google Scholar 

  • Barman SM, Gebber GL (1978b) Site of recurrent inhibition of preganglionic sympathetic unit discharges. Fed Proc 37:744

    Google Scholar 

  • Barman SM, Wurster RD (1975) Visceromotor organization within descending spinal sympathetic pathways in the dog. Circ Res 37:209–214

    PubMed  Google Scholar 

  • Barman SM, McCaffrey TV, Wurster RD (1976) Cardiovascular and electrophysiological responses to sympathetic pathway stimulation. Am J Physiol 230:1095–1100

    PubMed  Google Scholar 

  • Bartorelli C, Bizzi E, Libretti A, Zanchetti A (1960) Inhibitory control of sinocarotid pressoceptive afferents on hypothalamic autonomic activity and sham-rage behavior. Arch Ital Biol 98:308–326

    Google Scholar 

  • Baumgarten R von, Aranda Coddou L (1959) Distribución de las aferencias cardiovasculares y respiratorias en las raices bulbares del nervio vago. Acta Neurol Lat Am 5:267–278

    Google Scholar 

  • Baumgarten R von, Kanzow E (1958) The interaction of two types of inspiratory neurones in the region of the tractus solitarious of the cat. Arch Ital Biol 96:361–373

    Google Scholar 

  • Baust W, Heinemann H (1967) The role of the baroreceptors and blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3:12–24

    Article  Google Scholar 

  • Baust W, Niemczyk H (1968) The influence of mesencephalic structures on phasic regulation of blood pressure. Pfluegers Arch 301:31–42

    Article  Google Scholar 

  • Baust W, Niemczyk H, Schaeffer H, Vieth J (1963) Über ein pressosensibles Areal im hinteren Hypothalamus der Katze. Pfluegers Arch 174:374–384

    Google Scholar 

  • Bayliss WM (1923) The vasomotor system. Longman, London

    Google Scholar 

  • Beattie J, Brow GR, Long CNH (1930) Physiological and anatomical evidence for the existence of nerve tracts connecting hypothalamus with spinal sympathetic centres. Proc R Soc Lond (Biol) 105:253–275

    Google Scholar 

  • Bennett JA, Kidd C, Lafit AB, McWilliams PN (to be published) The brainstem locations of cell bodies of vagal efferent fibres in cardiac and pulmonary branches in the cat. J Physiol (Lond)

    Google Scholar 

  • Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14:153–158

    Article  PubMed  Google Scholar 

  • Bianchi AL (1971) Localisation et étude des neurones respiratoires embaires. Mise en jeu antidromique par stimulation spinale ou vagale. J Physiol (Paris) 63:5–40

    Google Scholar 

  • Biscoe JJ, Sampson SR (1968) Rhythmical and non-rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J Physiol (Lond) 196:327–338

    PubMed  Google Scholar 

  • Biscoe TJ, Sampson SR (1970a) Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol (Lond) 209:341–358

    PubMed  Google Scholar 

  • Biscoe TJ, Sampson SR (1970b) Responses of cells in the brainstem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol (Lond) 209:359–373

    PubMed  Google Scholar 

  • Bok T (1928) Das Rückenmark. In: Mollendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Srpinger, Berlin

    Google Scholar 

  • Bolme P, Ngai SH, Rosen S (1967) Influence of vasoconstrictor nerve activity on the cholinergic vasodilator response in skeletal muscle in the dog. Acta Physiol Scand 71:323–333

    PubMed  Google Scholar 

  • Bonvallet M, Sigg B (1958) Etude electrophysiologique des afferences vagales au niveau de leur penetration dans le bulbe. J Physiol (Paris) 50:63–74

    Google Scholar 

  • Bonvallet M Dell P, Hiebel G (1953) Sinus carotidien et activé électrique cérébrale. C.R. Soc Biol (Paris) 147:1166–1169

    Google Scholar 

  • Borison HL, Domjan D (1970) Persistence of the cardioinhibitory response to brainstem ischaemia after destruction of the area postrema and the dorsal vagal nuclei. J Physiol (Lond) 211:263–277

    PubMed  Google Scholar 

  • Brickman AL, Kaufman MP, Petrik GK, Schneiderman N (1977) Responses of anterior hypothalamic neurons to stimulation of aortic nerve and caudate nucleus in the rabbit. Exp Neurol 56:622–627

    Article  PubMed  Google Scholar 

  • Brodal A (1969) Neurological anatomy in relation to clinical medicine, 2nd ed. Oxford University Press, London

    Google Scholar 

  • Bronk DW, Tower SS, Solandt DY (1938) The transmission of trains of impulses through sympathetic ganglion and its postganglionic nerves. Am J Physiol 122:1–15

    Google Scholar 

  • Bronk DW, Pitts RF, Larrabee MG (1940) Role of the hypothalamus in cardiovascular regulation. Res Publ Assoc Res Nerv Ment Dis 20:323–341

    Google Scholar 

  • Brown GL, Eccles JC (1934a) The action of a single vagal volley on the rhythm of the heart beat. J Physiol (Lond) 81:211–240

    Google Scholar 

  • Brown GL, Eccles JC (1934b) Further experiments on vagal inhibition of the heart beat. J Physiol 81:241–257

    Google Scholar 

  • Burkhart SM, Ledsome JR (1977) The response to distension of the pulmonary vein-left atrial junctions in anaesthetised dogs after section of the rostral medulla. J Physiol (Lond) 273:57–68

    PubMed  Google Scholar 

  • Burkhart SM, Furnell L, Ledsome JR (1977) Effects of medullary lesions on arterial baroreceptor reflexes and responses to distension of pulmonary vein-left atrial junctions in anaesthetized dogs. J Physiol (Lond) 273:69–82

    PubMed  Google Scholar 

  • Cajal S, Ramon Y (1909) Histologie du systeme nerveux de l'homme et des vertebres. Maloine, Paris

    Google Scholar 

  • Calaresu FR, Cottle MK (1965) Origin of cardiomotor fibres in the dorsal nucleus of the vagus in the cat: A histological study. J Physiol (Lond) 176:252–260

    PubMed  Google Scholar 

  • Calaresu FR, Henry JL (1970) The mechanism of cardio-acceleration elicited by electrical stimulation of the parahypoglossal area in the cat. J Physiol (Lond) 210:107–120

    PubMed  Google Scholar 

  • Calaresu FR, Pearce JW (1965a) Electrical activity of efferent vagal fibres and dorsal nucleus of the vagus during reflex bradycardia in the cat. J Physiol (Lond) 176:228–240

    PubMed  Google Scholar 

  • Calaresu FR, Pearce JW (1965b) Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J Physiol (Lond) 176:241–251

    PubMed  Google Scholar 

  • Camerer H, Stroh-Werz M, Krienke B, Langhorst P (1977) Postganglionic sympathetic activity with correlation to heart-rate and central cortical rhythms. Pfluegers Arch 370:221–226

    Article  Google Scholar 

  • Cannon WB (1929) Sympathetic division of the autonomic system in relation to homeostasis. Arch Neurol Psychiatry 22:282–294

    Google Scholar 

  • Cannon WB (1930) The autonomic nervous system: an interpretation. Lancet I:1109–1115

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. Norton, New York

    Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16

    Article  PubMed  Google Scholar 

  • Chai CY, Wang SC (1962) Localisation of central cardiovascular control mechanism in lower brainstem of the cat. Am J Physiol 202:25–30

    PubMed  Google Scholar 

  • Chai CY, Wang SC (1968) Integration of sympathetic cardiovascular mechanisms in medulla oblongata of the cat. Am J Physiol 215:1310–1315

    PubMed  Google Scholar 

  • Chen HI, Cahi CY (1976) Integration of the cardiovagal mechanism in the medulla oblongata of the cat. Am J Physiol 231:454–461

    PubMed  Google Scholar 

  • Chess GF, Tam RMK, Calaresu FR (1975) Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol 228:775–780

    PubMed  Google Scholar 

  • Chiurugi E, Mollica A (1954) Contributo alla localizzazione del centro vagale cardio-inhibitore. Arch Fisiol 54:249–267

    Google Scholar 

  • Chung JM, Chung K, Wurster RD (1975) Sympathetic preganglionic neurons of the cat spinal cord. Horseradish peroxidase study. Brain Res 91:126–131

    Article  PubMed  Google Scholar 

  • Ciriello J, Calaresu FR (1977) Do some cardioinhibitory axons originate in the external cuneate nucleus? Neuroscience Abstract 3:19

    Google Scholar 

  • Cohen DH, Schnall AM, MacDonald RL, Pitts LH (1970) Medullary cells of origin of vagal cardioinhibitory fibres in the pigeon. I. Anatomical structure of peripheral vagus nerves and the dorsal motor nucleus. J Comp Neurol 140:299–320

    Article  PubMed  Google Scholar 

  • Cohen, MI, Gootman PM (1969) Spontaneous and evoked oscillations in respiratory and sympathetic discharge. Brain Res 16:265–268

    Article  PubMed  Google Scholar 

  • Cohen MI, Gootman PM (1970) Periodicities in efferent discharge of splanchnic nerve of the cat. Am J Physiol 218:1092–1101

    PubMed  Google Scholar 

  • Coleridge HM, Coleridge JCG, Rosenthal F (1976) Prolonged inactivation of cortical pyramidal tract neurones in cats by distension of the carotid sinus. J Physiol (Lond) 256:635–650

    PubMed  Google Scholar 

  • Coote JH (1978) Afferent input as factors in aberrant autonomic, sensory and motor function. In: Korr IM (ed) The neurobiologic mechanisms in manipulative therapy. Plenum, New York, pp 91–127

    Google Scholar 

  • Coote JH, Downman CBB (1966) Central pathways of some autonomic reflex discharges. J Physiol (Lond) 183:714–729

    PubMed  Google Scholar 

  • Coote JH, Downman CBB (1969) Supraspinal control of reflex activity in renal nerves. J Physiol (Lond) 202:161–170

    PubMed  Google Scholar 

  • Coote JH, Macleod VH (1974a) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (Lond) 241:453–457

    PubMed  Google Scholar 

  • Coote JH, Macleod VH (1974b) Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol (Lond) 241:477–496

    PubMed  Google Scholar 

  • Coote JH, Macleod VH (1975) The spinal route of sympatho-inhibitory pathways descending from the medulla oblongata. Pfluegers Arch 359:335–347

    Article  Google Scholar 

  • Coote JH, Macleod VH (1977) The effect of intraspinal microinjections of 6-hydroxydopamine on the inhibitory influence exerted on spinal sympathetic activity by the baroreceptors. Pfluegers Arch 371:271–277

    Google Scholar 

  • Coote JH, Perez-Gonzalez JF (1972) The baroreceptor reflex during stimulation of the hypothalamic defence region. J Physiol (Lond) 224:74–75

    Google Scholar 

  • Coote JH, Sato A (1978) Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res 142:425–437

    Article  PubMed  Google Scholar 

  • Coote JH, Westbury DR (1974) The influence of the carotid sinus baroreceptors on activity in single sympathetic preganglionic neurones. J Physiol (Lond) 241:22–23

    Google Scholar 

  • Coote JH, Westbury DR (1979a) Functional grouping of sympathetic preganglionic neurones in the third thoracic segment of the spinal cord. Brain Res 179:367–372

    Article  PubMed  Google Scholar 

  • Coote JH, Westbury DR (1979b) Intracellular recordings from sympathetic preganglionic neurones. Neurosci Lett 15:171–175

    Article  PubMed  Google Scholar 

  • Coote JH, Downman CBB, Weber WV (1969) Reflex discharges into thoracic white rami elicited by somatic and visceral afferent excitation. J Physiol (Lond) 202:147–155

    PubMed  Google Scholar 

  • Coote JH, Hilton SM, Zbrozyna AW (1973) The ponto-medullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol (Lond) 229:257–274

    PubMed  Google Scholar 

  • Coote JH, Macleod VH, Martin TL (1978) Bulbospinal tryptaminergic neurones. A search for the role of bulbospinal tryptaminergic neurones in the control of sympathetic activity. Pfluegers Arch 377:109–116

    Article  Google Scholar 

  • Coote JH, Hilton SM, Perez-Gonzalez JF (1979) Inhibition of the baroreceptor reflex on stimulation in the brainstem defence centre. J Physiol (Lond) 288:549–560

    PubMed  Google Scholar 

  • Cottle MK (1964) Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J Comp Neurol 122:329–343

    Article  PubMed  Google Scholar 

  • Cottle MKW, Calaresu FR (1975) Projections from the nucleus and tractus solitarius in the cat. J Comp Neurol 161:143–158

    Article  PubMed  Google Scholar 

  • Crill WE, Reis DJ (1968) Distribution of carotid sinus and depressor nerves in the cat brain stem. Am J Physiol 214:269–276

    PubMed  Google Scholar 

  • Culberson JL, Kimmel DL (1972) Central distribution of primary afferent fibres of the glossopharynegeal and vagal nerves in the opossum didelphis virginiana. Brain Res 44:325–335

    Article  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels in the bulbospinal neuron systems. Acta Physiol Scand (Suppl 247) 64:7–85

    Google Scholar 

  • Daly M de B, Elsner R, Angell-James JE (1977) Cardiorespiratory control by the carotid chemoreceptors during experimental dives in the seal. Am J Physiol 232:H508–516

    PubMed  Google Scholar 

  • Daly M de B, Korner PI, Angell-James JE, Oliver JR (1978) Cardiovascular-respiratory reflex interactions between carotid bodies and upper-airways resistance in the monkey. Am J Physiol 234:H293–299

    PubMed  Google Scholar 

  • Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart-rate and cardiac vagal efferent nerve activity. J Physiol (Lond) 259:523–530

    PubMed  Google Scholar 

  • Davies RO, Edwards MW (1973) Distribution of carotid body chemoreceptors afferents in the medulla of the cat. Brain Res 64:451–454

    Article  PubMed  Google Scholar 

  • Davies RO, Edwards MW (1975) Medullary relay neurons in the carotid body chemoreceptor pathways of cats. Respir Physiol 24:69–79

    Article  PubMed  Google Scholar 

  • Davis AL, McCloskey DI, Potter EK (1977) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J Physiol 272:691–703

    PubMed  Google Scholar 

  • Day MD, Roach AG (1974) Central adrenoreceptors and the control of arterial blood pressure. Clin Exp Pharmacol Physiol 1:347–360

    PubMed  Google Scholar 

  • De Castro F (1928) Sur la structure et l'innervation du sinus carotidien de l'homme et des mammiferes. Nouveau faits sur l'innervation et la function du glomus caroticum. Etudes anatomiques et physiologiques. Trab Insv Cajal Invest Biol 25:331–350

    Google Scholar 

  • De Groat WC, Lalley PM (1974) Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res 80:17–40

    Article  PubMed  Google Scholar 

  • De Jong W, Nijkamp P, Bohus B (1975a) Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats. Arch Int Pharmacodyn Ther 213:272–284

    PubMed  Google Scholar 

  • De Jong W, Zandberg P, Bohus B (1975b) Central inhibitory noradrenergic cardiovascular control. Brain Res 42:285–298

    Google Scholar 

  • De Jong W, Palkovits M (1976) Hypertension after localised transection of brainstem fibres. Life Sci 18:61–64

    Article  PubMed  Google Scholar 

  • De Jong W, Zandberg P, Palkovits M, Bohus B (1977) Acute and chronic hypertension after lesions and transections of the rat brainstem. Prog Brain Res 47:189–198

    PubMed  Google Scholar 

  • Dell P, Bonvallet M (1966) Influénces d'origine cardio-vasculaire et réspiratoire sur l'activité somatique. Acta Neuroveg 28:148–168

    Article  Google Scholar 

  • Dembowsky K, Czachurski J, Amendt K, Seller H (1978) Tonic, supraspinal monoaminergic inhibition on spinal somato-sympathetic reflexes. Pfluegers Arch 373:76

    Google Scholar 

  • De Vito JL, Clausing KW, Smith OA (1974) Uptake and transport of horseradish peroxidase by cut ends of the vagus nerve. Brain Res 82:269–271

    Article  PubMed  Google Scholar 

  • Djojosugito A, Folkow B, Lisander B, Sparks H (1965) Mechanism of escape of skeletal muscle resistance vessels from the influence of sympathetic cholinergic vasodilator fibre activity. Acta Physiol Scand 72:148–156

    Google Scholar 

  • Djojosugito AM, Folkow B, Kylstra PH, Lisander B, Tuttle RS (1970) Differentiated interaction between hypothalamic defence reaction and baroreceptor reflexes. Acta Physiol Scand 78:376–385

    PubMed  Google Scholar 

  • Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593

    PubMed  Google Scholar 

  • Doba N, Reis DJ (1974a) Role of cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in cats. Circ Res 34:9–18

    Google Scholar 

  • Doba N, Reis DJ (1974b) Role of central and peripheral adrenergic mechanisms in neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 34:293–301

    PubMed  Google Scholar 

  • Donoghue S (1978) An electrophysiological study of the connections of aortic and cardiac vagal nerves in the brainstem of the cat. Ph.D. thesis, University of Leeds

    Google Scholar 

  • Donoghue S, Fox RE, Kidd C (1977) The distribution of aortic nerve afferent fibres in the brainstem of the cat. J Physiol (Lond) 273:80–81P

    Google Scholar 

  • Donoghue S, Kidd C, McWilliam PN (1978) The distribution of neurones in the brain stem of the cat activated by A and C fibres of the aortic nerve. J Physiol (Lond) 285:56–57P

    Google Scholar 

  • Douglas WW, Ritchie JM (1956) Cardiovascular reflexes produced by electrical excitation of non-medullated afferents in the vagus, carotid sinus and aortic nerves. J Physiol (Lond) 134:167–178

    PubMed  Google Scholar 

  • Douglas WW, Schaumann W (1956) A study of depressor and pressor components of the cat's carotid sinus and aortic nerves using electrical stimulus of different intensities and frequency. J Physiol (Lond) 132:173–186

    PubMed  Google Scholar 

  • Douglas WW, Ritchie JM, Schaumann W (1956) Depressor reflexes from medullated and non-medullated fibres in the rabbit's aortic nerve. J Physiol (Lond) 132:187–198

    PubMed  Google Scholar 

  • Downman CBB (1972) The vasomotor centre. In: Downman CBB (ed) Modern trends in physiology. Butterworths, London, pp 292–308

    Google Scholar 

  • Dugin SF, Zakharow ST, Samonina GE, Udelnov MG (1976) The effect of electrical stimulation of the vagal nuclei in anaesthetized and unanaesthetized cats. Sechenov Physiol J USSR 62:382–386

    Google Scholar 

  • Elliason S, Folkow B, Lindgren P, Üvnas B (1951) Activation of sympathetic vasodilator nerves to skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol Scand 23:333–351

    PubMed  Google Scholar 

  • Elsner N, Angell-James JE, Daly M de B (1977) Carotid body chemoreceptor reflexes and their interactions in the seal. Am J Physiol 232:H517–H526

    PubMed  Google Scholar 

  • Euler C von, Hayward JN, Marttila I, Wyman RJ (1973a) Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat. Vagal inputs, spinal connections and morphological identification. Brain Res 61:1–22

    Article  PubMed  Google Scholar 

  • Euler C von, Hayward JN, Marttila I, Wyman R (1973b) The spinal connections of the inspiratory neurones of the ventrolateral nucleus of the cat's solitary tract. Brain Res 61:23–33

    Article  PubMed  Google Scholar 

  • Evans MH (1977) Facilitation of reflex bradycardia by hypothalamic stimulation in the anaesthetised rabbit. J Physiol (Lond) 265:33–34P

    Google Scholar 

  • Feigl E, Johansson B, Lofving B (1964) Renal vasoconstriction and the defence reaction. Acta Physiol Scand 62:429–435

    PubMed  Google Scholar 

  • Fernandez de Molina A, Kuno M, Perl E (1965) Antidromically evoked responses from sympathetic preganglionic neurones. J Physiol (Lond) 180:321–335

    PubMed  Google Scholar 

  • Fidone SJ, Sato A (1969) A study of chemoreceptor and baroreceptor A and C fibres in the cat carotid nerve. J Physiol (Lond) 205:527–548

    PubMed  Google Scholar 

  • Foley JO, Dubois FS (1934) An experimental study of the rootlets of the vagus nerve in the cat. J Comp Neurol 60:137–159

    Article  Google Scholar 

  • Folkow B, Öberg B, Rubinstein EH (1964) A proposed differentiated neuro-effector organisation in muscle resistance vessels. Angiologica 1:197–208

    Google Scholar 

  • Folkow B, Lisander B, Tuttle RS, Wang SC (1968) Changes in cardiac output upon stimulation of the hypothalamic defence area and the medullary depressor area in the cat. Acta Physiol Scand 72:220–233

    PubMed  Google Scholar 

  • Foreman RD, Wurster RD (1973) Localization and functional characteristics of descending sympathetic spinal pathways. Am J Physiol 225:212–217

    PubMed  Google Scholar 

  • Fussey IF, Kidd C, Whitwam JG (1973a) The effects of baroreceptors on the latency of evoked responses in sympathetic nerves during the cardiac cycle. J Physiol (Lond) 229:601–616

    PubMed  Google Scholar 

  • Fussey IF, Kidd C, Whitwam JG (1973b) Activity evoked in the brainstem by stimulation of C-fibres in the cervical vagus nerve in the dog. Brain Res 49:436–440

    Article  PubMed  Google Scholar 

  • Gabriel M, Seller H (1970) Interaction of baroreceptor afferents from carotid sinus and aorta at the nucleus tractus solitarii. Pfluegers Arch 318:7–20

    Article  Google Scholar 

  • Gahery Y, Ancri D (1967) Projections vago-aortiques et corticales au niveau de la region due noyeau du faisceau solitaire. J Physiol (Paris) 59:408

    Google Scholar 

  • Gandevia SC, McCloskey DI, Potter EK (1978) Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J Physiol (Lond) 276:369–381

    PubMed  Google Scholar 

  • Garcia M, Jordan D, Spyer KM (1978) Studies on the properties of cardiac vagal neurones. Neurosci Lett (Suppl) 1:S16

    Google Scholar 

  • Garcia M, Jordan D, Spyer KM (1979a) The central projections of single vagal afferent neurones in the rabbit. J Physiol (Lond) 289:42–43

    Google Scholar 

  • Garcia M, Jordan D, Spyer KM (1979b) Identification of aortic nerve cell bodies in the nodose ganglion of the rabbit and their central connections. J Physiol 290:23–24

    PubMed  Google Scholar 

  • Garcia M, Jordan D, Schneiderman N, Spyer KM (to be published) Vagal cardiomotor neurones identified by the anterograde transport of horseradish peroxidase

    Google Scholar 

  • Gebber GL (1976) Basis for phase relations between baroreceptor and sympathetic nervous discharge. Am J Physiol 230:263–270

    PubMed  Google Scholar 

  • Gebber GL, Barman SM (1977) Brainstem vasomotor circuits involved in genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–76

    PubMed  Google Scholar 

  • Gebber GL, Barman SM (1979) Inhibitory interaction between preganglionic sympathetic neurons. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Willey-Flammarion, Paris, pp 131–145

    Google Scholar 

  • Gebber GL, Barman SM (to be published) The cardiac-related rhythm in sympathetic nerve discharge (SND): Baroreceptor, brain stem or cortical in origin. In: Sleight P (ed) Baroreceptor and hypertension. Oxford University Press, Oxford

    Google Scholar 

  • Gebber GL, Klevans, LR (1972) Central nervous system modulation of cardiovascular reflexes. Fed Prod 31:1245–1252

    Google Scholar 

  • Gebber GL, McCall RS (1976) Identification and discharge patterns of spinal sympathetic interneurons. Am J Physiol 231:722–733

    PubMed  Google Scholar 

  • Gebber GL, Snyder DW (1970) Hypothalamic control of baroreceptor reflexes. Am J Physiol 218:124–131

    PubMed  Google Scholar 

  • Gebber GL, Taylor DG, Weaver LC (1973) Electrophysiological studies on organization of central vasopressor pathways. Am J Physiol 224:470–481

    PubMed  Google Scholar 

  • Gebber GL, Barman SM, McCall RB (1978) Recurrent inhibition of preganglionic sympathetic unit discharges. Fed Proc 37:743

    Google Scholar 

  • Geis GS, Wurster RD (1978) Localisation of cardiac vagal preganglionic soma. Neurosciences Abstract 4:20

    Google Scholar 

  • Geis GS, Barratt G, Wurster RD (1978) Role of descending pressor pathway in conscious and pentobarbital-anaesthetized dog. Am J Physiol 234:H152–156

    PubMed  Google Scholar 

  • Gellhorn E (1957) Autonomic imbalance and the hypothalamus. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Gellhorn E, Nakao H, Redgate ES (1956) The influence of lesions in the anterior and posterior hypothalamus on tonic and phasic autonomic reactions. J Physiol (Lond) 131:402–423

    PubMed  Google Scholar 

  • Ghelarducci B, Pompeiano O, Spyer KM (1974a) Activity of precerebellar reticular neurones as a function of head position. Arch Ital Biol 112:98–125

    PubMed  Google Scholar 

  • Ghelarducci B, Pompeiano O, Spyer KM (1974b) Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus. Arch Ital Biol 112:126–141

    PubMed  Google Scholar 

  • Gimpl MP, Brickman AL, Kaufman MP, Schneiderman N (1976) Temporal relationships during barosensory attenuation in the conscious rabbit. Am J Physiol 230:1480–1484

    PubMed  Google Scholar 

  • Glees P, Nauta WJH (1955) A critical review of studies on axonal and terminal degeneration. Monatsschr Psychiatr Neurol 129:74–91

    PubMed  Google Scholar 

  • Gootman PM, Cohen MI (1970) Efferent splanchnic activity and systemic arterial blood pressure. Am J Physiol 219:897–903

    PubMed  Google Scholar 

  • Gootman PM, Cohen MI (1971) Evoked splanchnic potentials produced by electrical stimulation of medullary vasomotor regions. Exp Brain Res 13:1–14

    Article  Google Scholar 

  • Gootman PM, Cohen MI (1973) Periodic modulation (cardiac and respiratory) of spontaneous and evoked sympathetic discharge. Acta Physiol Pol 24:97–109

    PubMed  Google Scholar 

  • Gootman PM, Cohen MI, Piercey MP, Wolotsky P (1975) A search for medullary neurones with activity patterns similar to those in sympathetic nerves. Brain Res 87:395–406

    Article  PubMed  Google Scholar 

  • Green JH (1959) Cardiac vagal efferent activity in the cat. J Physiol (Lond) 149:47–49

    Google Scholar 

  • Green JH (1965) Physiology of baroreceptor function. Mechanism of receptor stimulation. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon, Oxford London, pp3–16

    Google Scholar 

  • Green JH, Heffron PF (1968) Studies upon the relationship between baroreceptor and sympathetic activity. Q J Exp Physiol 53:406–418

    Google Scholar 

  • Gregor M, Janig W, Wiprich L (1977) Cardiac and respiratory rhythmicities in cutaneous and muscle vasoconstrictor neurones to the cat's hindlimb. Pfluegers Arch 370:299–302

    Article  Google Scholar 

  • Grösse M, Janig W (1976) Vasoconstrictor and pilomotor fibres in skin nerves to cat's tail. Pfluegers Arch 361:221–229

    Article  Google Scholar 

  • Grundfest H (1939) The properties of mammalian B fibres. Am J Physiol 127:252–262

    Google Scholar 

  • Guazzi M, Zanchetti A (1965) Blood pressure and heart rate during natural sleep of the cat and their regulation by carotid sinus and aortic reflexes. Arch Ital Biol 103:789–817

    PubMed  Google Scholar 

  • Gunn CG, Sevelius G, Puiggari MS, Myers FK (1968) Vagal cardiomotor mechanisms in the hindbrain of the dog and cat. Am J Physiol 214:258–262

    PubMed  Google Scholar 

  • Gurevitch MI, Vyshatina AI (1973) Cardiovascular responses to electrical stimulation of the fastigial nuclei. Sechenov Physiol J USSR 59:1715–1722

    Google Scholar 

  • Haeusler G (1976) Central adrenergic neurons in experimental hypertension. In: Onesti G, Fernandez M, Kim KE (eds) Regulation of blood pressure by the central nervous system. The Fourth Hahnemann International Symposium on Hypertension (1975). Grune & Stratton, New York, pp 53–64

    Google Scholar 

  • Haeusler G (1977) Neuronal mechanisms influencing transmission in the baroreceptor reflex arc. Prog Brain Res 47:95–109

    PubMed  Google Scholar 

  • Hagbarth RE, Vallbo AB (1968) Pulse and respiratory groupings of sympathetic impulses in human muscle nerves. Acta Physiol Scand 74:96–108

    PubMed  Google Scholar 

  • Hamilton RB, Wallach JH, Petrik GK, Schneiderman N (1978) Putative short-latency barosensory circuit linking the baroreceptors, caudal diencephalon, and dorsal vagal nucleus in the rabbit. Neurosciences Abstracts 4:20

    Google Scholar 

  • Haymett BT, McCloskey DI (1975) Baroreceptor and chemoreceptor influences on heart-rate during the respiratory cycle in the dog. J Physiol (Lond) 245:699–712

    PubMed  Google Scholar 

  • Heinbecker P (1930) The potential analysis of the turtle and cat sympathetic and vagus nerve trunks. Am J Physiol 93:284–306

    Google Scholar 

  • Heinbecker P, O'Leary J (1933) The mammalian vagus nerve — functional and histological study. Am J Physiol 106:623–646

    Google Scholar 

  • Hellner K, Baumgarten R von (1961) Über ein Endigungsgebiet afferenter, kardiovaskulärer Fasern des Nervus vagus im Rautenhirn der Katze. Pfluegers Arch 273:223–234

    Article  Google Scholar 

  • Henry JL, Calaresu FR (1972) Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral nucleus in the cat. J Comp Neurol 144:205–214

    Article  PubMed  Google Scholar 

  • Henry JL, Calaresu FR (1974a) Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20:485–504

    PubMed  Google Scholar 

  • Henry JL, Calaresu FR (1974b) Pathways from medullary nuclei to spinal cardioacceleratory neurons in the cat. Exp Brain Res 20:505–514

    PubMed  Google Scholar 

  • Henry JL, Calaresu FR (1974c) Origin and course of crossed medullary pathways to spinal sympathetic neurons in the cat. Exp Brain Res 20:515–526

    PubMed  Google Scholar 

  • Henry JL, Calarsu FR (1974d) Responses of single units in the intermediolateral nucleus to stimulation of cardioregulatory medullary nuclei in the cat. Brain Res 77:314–319

    Article  PubMed  Google Scholar 

  • Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system. Churchill, London

    Google Scholar 

  • Hildebrandt JR (1974) Central connections of the aortic depressor and carotid sinus nerves. Exp Neurol 45:590–605

    Article  PubMed  Google Scholar 

  • Hilton SM (1963) Inhibition of baroreceptor reflexes on hypothalamic stimulation. J Physiol (Lond) 165:56–67

    Google Scholar 

  • Hilton SM (1965) Hypothalamic control of the cardiovascular responses in fear and rage. Sci Basis Med 217–233

    Google Scholar 

  • Hilton SM (1966) Hypothalamic regulation of the cardiovascular system. Br Med Bull 22:243–248

    PubMed  Google Scholar 

  • Hilton SM (1974) The role of the hypothalamus in the organisation of patterns of cardiovascular response in recent studies of hypothalamic function. In: Lederis K, Cooper KE (eds) Int Symp Calgary 1973. Karger, Basel, pp 306–314

    Google Scholar 

  • Hilton SM (1975) Ways of viewing the central nervous control of circulation — old and new. Brain Res 87:213–219

    Article  PubMed  Google Scholar 

  • Hilton SM (1977) Supramedullary organization of vasomotor control. Brain Res 47:77–84

    Google Scholar 

  • Hilton SM, Spyer KM (1969) The hypothalamic depressor area and the baroreceptor reflex. J Physiol (Lond) 165:56–57

    Google Scholar 

  • Hilton SM, Spyer KM (1971) Participation of the anterior hypothalamus in the baroreceptor reflex. J Physiol (Lond) 218:271–293

    PubMed  Google Scholar 

  • Hilton SM, McAllen RM, Spyer KM (1974) Area postrema and blood pressure. Nature 250:354

    Article  PubMed  Google Scholar 

  • Hilton SM, Spyer KM, Timms RJ (1975) Hindlimb vasodilatation evoked by stimulation of the motor cortex. J Physiol (Lond) 252:22–23

    Google Scholar 

  • Hilton SM, Spyer KM, Timms RJ (1979) The origin of the hindlimb vasodilatation evoked by stimulation of the motor cortex in the cat. J Physiol 287:545–558

    PubMed  Google Scholar 

  • Hirose K (1916) Über eine bulbo-spinale Bahn. Folia Neurobiol Biol (LP2) 10:371–382

    Google Scholar 

  • Hockman CH, Talesnik J, Livingstone KE (1969) Central nervous system modulation of baroreceptor reflexes. Am J Physiol 217:1681–1689

    PubMed  Google Scholar 

  • Hockman CH, Livingstone KE, Talesnik J (1970) Cerebellar modulation of reflex vagal bradycardia. Brain Res 23:101–104

    Article  PubMed  Google Scholar 

  • Hoffer BJ, Ratcheson R, Snider RS (1966) The effects of stimulation of the cerebellum on the circulatory system. Fed Proc 25:701

    Google Scholar 

  • Homma S, Miura M, Reis DJ (1970) Intracellular recordings from paramedian reticular neurons monosynaptically excited by stimulation of the carotid sinus nerve. Brain Res 18:185–188

    Article  PubMed  Google Scholar 

  • Hongo T, Ryall RW (1966) Electrophysiological and micro-electrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta Physiol Scand 68:96–104

    Google Scholar 

  • Horeyseck G, Janig W, Kirchner F, Thamer V (1976) Activation and inhibition of muscle and cutaneous postganglionic neurones to the hindlimb during hypothalamically induced vasoconstriction and atropine-sensitive vasodilation. Pfluegers Arch 361:231–240

    Article  Google Scholar 

  • Humphrey DR (1967) Neuronal activity in the medulla oblongata of the cat evoked by stimulation of the carotid sinus nerve. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 131–168

    Google Scholar 

  • Humphreys PW, Joels N, McAllen RM (1971) Modification of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. J Physiol (Lond) 216:461–482

    PubMed  Google Scholar 

  • Illert M, Gabriel M (1972) Descending pathways in the cervical cord of cats affecting blood pressure and sympathetic activity. Pfluegers Arch 335:109–124

    Article  Google Scholar 

  • Illert M, Seller H (1969) A descending sympatho-inhibitory tract in the ventrolateral column of the cat. Pfluegers Arch 313:343–360

    Article  Google Scholar 

  • Ingram WR, Dawkins EA (1945) The intramedullary course of afferent fibres of the vagus in the cat. J Comp Neurol 82:157–168

    Article  Google Scholar 

  • Iriuchijima J, Kumada M (1963) Efferent cardiac vagal discharge of the dog in response to electrical stimulation of sensory nerves. Jpn J Physiol 13:599–605

    PubMed  Google Scholar 

  • Iriuchijima J, Kumada M (1965) Activity in single vagal efferent fibres to the heart. Jpn J Physiol 14:479–487

    Google Scholar 

  • Janig W, Kümmel H (1977) Functional discrimination of postganglionic neurones to the cat's hindpaw with respect to skin potentials recorded from hairless skin. Pfluegers Arch 371:217–225

    Google Scholar 

  • Jankowska E, Roberts WJ (1972) An electro-physiological demonstration of the axonal projections of single spinal interneurones in the cat. J Physiol (Lond) 222:597–622

    PubMed  Google Scholar 

  • Jansen J, Brodal A (eds) (1954) Aspects of cerebellar anatomy. Grundt Tanum, Oslo, 423 pp

    Google Scholar 

  • Jewett DL (1962) Activity of single vagal efferent cardiac fibres in the dog. J Physiol (Lond) 142:110–126

    Google Scholar 

  • Jewett DL (1964) Activity of single efferent fibres in the cervical vagus nerve of the dog with special reference to possible cardioinhibitory fibres. J Physiol (Lond) 175:321–357

    PubMed  Google Scholar 

  • Jordan D (1977) Studies on the distribution and excitability of sinus and aortic nerve afferent terminals. Ph.D. thesis, University of Birmingham

    Google Scholar 

  • Jordan D, Khalid MEM, Schneiderman N, Spyer KM (1979) Preganglionic vagal cardiomotor neurones in the rabbit; location and properties. J Physiol (Lond) 296:20–21

    Google Scholar 

  • Jordan D, Spyer, KM (1977a) Studies on the termination of sinus nerve afferents. Pfluegers Arch 369:65–73

    Article  Google Scholar 

  • Jordan D, Spyer KM (1977b) Is presynaptic inhibition responsible for suppression of the baroreceptor reflex during the defence reaction? J Physiol (Lond) 258:58

    Google Scholar 

  • Jordan D, Spyer KM (1978a) The excitability of sinus nerve afferent terminals during the respiratory cycle. J Physiol (Lond) 277:66

    Google Scholar 

  • Jordan D, Spyer KM (1978b) The distribution and excitability of myelinated aortic nerve afferent terminals. Neurosci Lett 8:113–117

    Article  Google Scholar 

  • Jordan D, Spyer KM (1979) Studies on the excitability of sinus nerve afferent terminals. J Physiol (Lond) 297:123–134

    PubMed  Google Scholar 

  • Kahn N, Mills E (1967) Centrally evoked sympathetic discharge: A functional study of medullary vasomotor areas. J Physiol (Lond) 191:339–352

    PubMed  Google Scholar 

  • Kalia M (1977) Neuroanatomical organisation of the respiratory centers. Fed Proc 36:2405–2411

    PubMed  Google Scholar 

  • Kannan H, Yagi K (1978) Supraoptic neurosecretory neurones: evidence for the existence of converging inputs both from carotid baroreceptors and osmoreceptors. Brain Res 145:385–390

    Article  PubMed  Google Scholar 

  • Katona PG, Jih F (1975) Respiratory sinus arrhythmia. Non-invasive measure of para-sympathetic cardiac control. J Appl Physiol 39:801–805

    PubMed  Google Scholar 

  • Katona PG, Tan KS (1975) Interaction of aortic and carotid sinus baroreceptors; effect of activation times. Am J Physiol 228:238–248

    PubMed  Google Scholar 

  • Katona P, Poitras J, Barnett U, Terry B (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218:1030–1037

    PubMed  Google Scholar 

  • Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiovascular control. Am J Physiol 232:146–151

    Google Scholar 

  • Katz DM, Karten HJ (1979) The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius. Brain Res 191:187–195

    Article  Google Scholar 

  • Katz RL, Kahn N, Wang SC (1967) Brainstem mechanisms subserving baroreceptor reflexes, factors affecting the carotid occlusion response. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 169–180

    Google Scholar 

  • Kaufman MP, Hamilton RB, Wallach JH, Petrik GK, Schneiderman N (to be published) Lateral subthalamic area as a mediator of bradycardia responses in rabbits. Am J Physiol

    Google Scholar 

  • Keith IC, Kidd C, Linden RJ, Snow HM (1975a) Modification of neuronal activity in the dog medulla oblongata by stimulation of the left atrial receptors. J Physiol (Lond) 245:80–81

    Google Scholar 

  • Keith IC, Kidd C, Penna PE (1975b) Modification of sympathetic chronotropic carotid sinus reflex responses by hypothalamic stimulation. J Physiol 232:77

    Google Scholar 

  • Kent BB, Drane JW, Manning JW (1971) Suprapontine contributions to the carotid sinus reflex in the cat. Circ Res 29:534–541

    PubMed  Google Scholar 

  • Kerr FWL (1962) Facial, vagal and glossopharyngeal nerves in the cat. Arch Neurol 6:264–281

    PubMed  Google Scholar 

  • Kerr FWL (1967) Function of the dorsal motor nucleus of the vagus. Science 157:451–452

    PubMed  Google Scholar 

  • Kerr FWL (1969) Preserved vagal visceromotor function following destruction of the dorsal motor nucleus. J Physiol 202:755–769

    PubMed  Google Scholar 

  • Kerr FWL, Alexander S (1964) Descending autonomic pathways in the spinal cord. Arch Neurol 10:249–261

    PubMed  Google Scholar 

  • Kezdi P (ed) (1967) Baroreceptors and hypertension. Proceedings of the International Symposium Dayton, Ohio, 16–17th November 1965. Pergman Press, Oxford

    Google Scholar 

  • Kezdi P, Geller E (1968) Baroreceptor control of postganglionic sympathetic nerve discharge. Am J Physiol 214:427–435

    PubMed  Google Scholar 

  • Kimmel DL (1965) The termination of vagal and glossopharyngeal afferent nerve fibers in the region of the cat, rat and guinea pig. Anat Rec 151:371

    Google Scholar 

  • Kimmel DL, Kimmel DB (1964) Spinal distribution of glossopharyngeal and vagal afferent fibers in the cat, rat and guinea pig. Anat Rec 148:299–300

    Google Scholar 

  • Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176

    PubMed  Google Scholar 

  • Kirchner F, Kirchner D, Polosa C (1975a) Spinal organisation of sympathetic inhibition by spinal afferent volleys. Brain Res 87:161–170

    Article  PubMed  Google Scholar 

  • Kirchner F, Wyszogrodski I, Polosa C (1975b) Some properties of sympathetic neuron inhibition by depressor area and intraspinal stimulation. Pfluegers Arch 357:349–360

    Article  Google Scholar 

  • Klee MR (1966) Different effects on the membrane potential of motor cortex units after thalamic and reticular stimulation. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia University Press, New York London, pp 287–322

    Google Scholar 

  • Klevans LR, Gebber GL (1970) Facilitatory forebrain influence on cardiac component of baroreceptor reflexes. Am J Physiol 219:1235–1241

    PubMed  Google Scholar 

  • Koch E (1932) Die Irradiation der pressoreceptorischen Krislaufreflexe. Klin Wochenschr 11:225–227

    Article  Google Scholar 

  • Koepchen HP, Lux HD, Wagner PH (1961a) Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptischen Herzreflexes. Pfluegers Arch 273:413–430

    Article  Google Scholar 

  • Koepchen HP, Wagner PH, Lux HD (1961b) Über die Zusammenhänge zwischen zentraler Erregbarkeit reflektorischen Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pfluegers Arch 273:443–465

    Article  Google Scholar 

  • Koepchen HP, Langhorst P, Seller H, Polster J, Wagner D (1967) Neuronale Aktivität im unteren Hirnstamm mit Beziehung zum Kreislauf. Pfluegers Arch 294:40–64

    Article  Google Scholar 

  • Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brainstem. Brain Res 87:375–393

    Article  PubMed  Google Scholar 

  • Kötter V, Zerbst E, Schulze A (1970) Untersuchungen zur Bahnung und Konvergenz pressorezeptorischer Afferenzen mit Hilfe der Konditionstestreiztechnik. Pfluegers Arch 320:210–232

    Article  Google Scholar 

  • Koizumi K, Sato A (1969) Influence on sympathetic innervation on carotid sinus baroreceptor activity. Am J Physiol 216:321–329

    PubMed  Google Scholar 

  • Koizumi K, Seller H, Kaufman A, Brooks C McC (1971) Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res 27:281–294

    Article  PubMed  Google Scholar 

  • Korner PI (1971) Integrative neural cardiovascular control Physiol Rev 51:312–367

    PubMed  Google Scholar 

  • Kosaka K (1909) Über die Vaguskerne des Hundes. Neurol CBL 28:406–416

    Google Scholar 

  • Kosaka K, Yagita K (1905) Experimentelle Untersuchungen über den Ursprung des N. vagus und die zentralen Endigungen der dem Plexus nodosus entstammenden sensiblen Vagusfasern sowie über den Verlauf ihrer sekundären Bahn. Neurol Med Chir (Tokyo) 4:29–49

    Google Scholar 

  • Kumada M, Nakajima H (1972) Field potentials evoked in rabbit brainstem by stimulation of the aortic nerve. Am J Physiol 223:575–582

    PubMed  Google Scholar 

  • Kumada M, Sagawa K (1974) Modulation of the baroreceptor reflex by central gray stimulation. J Physiol Soc Jpn 36:147–148

    Google Scholar 

  • Kumada M, Nogami K, Sagawa K (1975a) Modulation of carotid sinus baroreceptor reflex by sciatic nerve stimulation. Am J Physiol 228:1535–1541

    PubMed  Google Scholar 

  • Kumada M, Schramm LP, Altansberger RA, Sagawa K (1975b) Modulation of carotid sinus baroreceptor reflex by hypothalamic defence response. Am J Physiol 228:34–45

    PubMed  Google Scholar 

  • Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol (Lond) 222:1–15

    PubMed  Google Scholar 

  • Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brainstem cell groups in the cat. Neurosci Lett 1:9–14

    Article  Google Scholar 

  • Kylstra PH, Lisander B (1970) Differentiated interaction between hypothalamic defence reaction and baroreceptor reflexes. Acta Physiol Scand 78:386–392

    PubMed  Google Scholar 

  • Lam RL, Tyler HR (1952) Electrical responses in visceral afferent nucleus of the rabbit by vagal stimulation. J Comp Neurol 97:21–36

    Article  PubMed  Google Scholar 

  • Landgren S (1952) On the excitation mechanism of the carotid baroreceptors. Acta Physiol Scand 26:1–34

    PubMed  Google Scholar 

  • Langhorst P, Werz M (1974) Concept of functional organization of brainstem “cardiovascular center”. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 238–255

    Google Scholar 

  • Langhorst P, Stroh-Werz M, Dittmar K, Camerer H (1975) Facultative coupling of reticular neuronal activity with peripheral cardiovascular and central cortical rhythms. Brain Res 87:407–418

    Article  PubMed  Google Scholar 

  • Lawn AM (1964) The localisation by means of electrical stimulation of the origin and path in the medulla oblongata of the motor nerve fibres of the rabbit oesophagus. J Physiol (Lond) 174:323–344

    PubMed  Google Scholar 

  • Lawn AM (1966) The nucleus ambiguous of the rabbit. J Comp Neurol 127:307–320

    Article  PubMed  Google Scholar 

  • Lebedev VP, Petrov VI, Skobelev VA (1980) Do sympathetic preganglionic neurones have a recurrent inhibitory mechanism. Pfluegers Arch 385:91–97

    Article  Google Scholar 

  • Lee TM, Kuo JS, Chai CY (1972) Central integrative mechanism of the Bezold-Jarisch and baroreceptor reflexes. Am J Physiol 222:713–720

    PubMed  Google Scholar 

  • Levy MN (1977) Parasympathetic control of the heart. In: Randal WC (ed) Neural regulation of the heart. Oxford University Press, New York, pp 95–130

    Google Scholar 

  • Levy MN, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27:465–470

    PubMed  Google Scholar 

  • Levy MN, Degeest H, Zieske H (1966) Effects of respiratory centre activity on the heart. Circ Res 18:67–78

    PubMed  Google Scholar 

  • Lipski J, Trzebski A (1975) Bulbospinal neurones activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurons. Pfluegers Arch 356:181–192

    Article  Google Scholar 

  • Lipski J, McAllen RM, Spyer, KM (1972) Localisation of sinus nerve afferent endings in the brainstem. J Physiol (Lond) 225:30–31P

    Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1975) The sinus nerve and baroreceptor input to the medulla of the cat. J Physiol (Lond) 251:61–78

    PubMed  Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1976a) Synaptic activation of cardiac vagal motoneurones. J Physiol (Lond) 256:68

    Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1976b) The carotid body chemoreceptor input to the inspiratory neurones of the nucleus of the tractus solitarious. J Physiol (Lond) 258:115–116

    Google Scholar 

  • Lipski J, McAllen RM, Trzebski A (1976c) Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Res 107:132–136

    Article  PubMed  Google Scholar 

  • Lipski J, Coote JH, Trzebski A (1977a) Temporal patterns of antidromic invasion latencies of sympathetic preganglionic neurons related to central inspiratory activity and pulmonary stretch receptor reflex. Brain Res 135:162–166

    Article  PubMed  Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1977b) The carotid chemoreceptor input to the respiratory neurones of the nucleus of the tractus solitarious. J Physiol (Lond) 269:797–810

    PubMed  Google Scholar 

  • Lisander B, Martner J (1971a) Cerebellar suppression of the autonomic components of the defence reaction. Acta Physiol Scand 81:84–95

    PubMed  Google Scholar 

  • Lisander B, Martner J (1971b) Interaction between the fastigial pressor response and the baroreceptor reflex. Acta Physiol Scand 83:505–514

    PubMed  Google Scholar 

  • Lisander B, Martner J (1973) Interaction between the fastigial pressor response and the defence reaction. Acta Physiol Scand 87:359–367

    PubMed  Google Scholar 

  • Little R, Wennergren G, Öberg B (1975) Aspects of the central interaction of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol (Scand) 93:85–96

    Google Scholar 

  • Löfving B (1961) Cardiovascular adjustments induced from the rostral cingulate gyrus. Acta Physiol Scand (Suppl) 184:1–82

    Google Scholar 

  • Loewy AD, Burton H (1978) Nuclei of the solitary tract. Efferent projections to the lower brainstem and spinal cord of the cat. J Comp Neurol 181:421–450

    Article  PubMed  Google Scholar 

  • Loizou LA (1969) Projections of the locus coerulus in the albino rat. Brain Res 15:563–566

    Article  PubMed  Google Scholar 

  • Lopes OU, Palmer JF (1976a) Proposed respiratory ‘gating’ mechanism for cardiac slowing. Nature 264:454–456

    Article  PubMed  Google Scholar 

  • Lopes OU, Palmer JF (1976b) Hypothalamic inhibiton of vagal component of the sinus nerve cardiac reflex. J Physiol (Lond) 260:50

    Google Scholar 

  • Lopes OU, Palmer JF (1978) Mechanism of hypothalamic control of cardiac component of sinus nerve reflex. Q J Exp Physiol 63:231–254

    Google Scholar 

  • Magnes J, Moruzzi G, Pompeiano O (1961) Synchronization of the EEG produced by low frequency electrical stimulation of the region of the solitary tract. Arch Ital Biol 99:33–67

    Google Scholar 

  • Mannard A, Polosa C (1973) Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. J Neurophysiol 36:398–408

    PubMed  Google Scholar 

  • Manning JW (1962) Lesions of the medullary reticular formation and cardiovascular reflexes. Fed Proc 21:107

    Google Scholar 

  • Manning JW (1965a) Intracranial representation of cardiac control In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 16–33

    Google Scholar 

  • Manning JW (1965b) Cardiovascular reflexes following lesions in the medullary reticular formation. Am J Physiol 208:283–288

    PubMed  Google Scholar 

  • Marguth H, Raule W, Schaeffer H (1951) Aktionsströme in zentrifugale Herznerven. Pfluegers Arch 254:224–245

    Article  Google Scholar 

  • Marshall JM (1977) The cardiovascular response to stimulation of carotid chemoreceptors. J Physiol 266:48–49

    Google Scholar 

  • Martin GF, Humbertson AO, Laxson C, Parreton WM (1979) Evidence for direct bulbospinal projections to lamina IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opposum. Brain Res 170:165–171

    Article  PubMed  Google Scholar 

  • McAllen RM (1973) Projections of the carotid sinus baroreceptors to the medulla of the cat. Ph D thesis, University of Birmingham

    Google Scholar 

  • McAllen RM (1976) The inhibition of the baroreceptor input to the medulla by stimulation of the hypothalamic defence area. J Physiol (Lond) 257:45–46

    PubMed  Google Scholar 

  • McAllen RM, Spyer KM (1972) 'Baroreceptor’ neurones in the medulla of the cat. J Physiol (Lond) 222:68–69

    Google Scholar 

  • McAllen RM, Spyer KM (1975) The origin of cardiac vagal neurones in the medulla of the cat. J Physiol 244:82–83

    Google Scholar 

  • McAllen RM, Spyer KM (1976) The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol (Lond) 258:187–204

    PubMed  Google Scholar 

  • McAllen RM, Spyer KM (1977) Bradycardia produced by iontophoretic activation of preganglionic vagal motoneurones. J Physiol (Lond) 269:49

    Google Scholar 

  • McAllen RM, Spyer KM (1978a) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364

    PubMed  Google Scholar 

  • McAllen RM, Spyer KM (1978b) The baroreceptor input to cardiac vagal motoneurones. J Physiol (Lond) 282:365–374

    PubMed  Google Scholar 

  • McAllen RM, Jordan D, Spyer KM (1979) The carotid baroreceptor input to the brain. In: Koepchen HP, Hiltom SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York pp 87–92

    Google Scholar 

  • McCall RS, Gebber GL, Barman SM (1977) Spinal interneurones in the baroreceptor reflex arc. Am J Physiol 232:H657–665

    PubMed  Google Scholar 

  • Merrill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the nervous system. Clarendon Press, Oxford, pp 451–486

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  Google Scholar 

  • Middleton S, Middleton HH, Grundfest H (1950) Spike potentials and cardiac effects of mammalian vagus nerve. Am J Physiol 162:553–559

    PubMed  Google Scholar 

  • Middleton S, Woolsley CN, Burton H, Rose JE (1973) Neural activity with cardiac periodicity in the medulla oblongata of the cat. Brain Res 50:297–314

    Article  PubMed  Google Scholar 

  • Miller FR, Bowman JT (1915) The cardio-inhibitory center. Am J Physiol 39:149–153

    Google Scholar 

  • Miller R (1976) Identification of vagal efferent neurones; a horseradish peroxidase study. J Physiol (Lond) 256:69–70

    Google Scholar 

  • Mitchell GAG, Warwick R (1955) The dorsal vagal nucleus. Acta Anat 25:371–395

    PubMed  Google Scholar 

  • Miura M (1975) Postsynaptic potentials recorded from the nucleus of the solitary tract and its subadjacent reticular formation elicited by stimulation of the carotid sinus nerve. Brain Res 100:437–440

    Article  PubMed  Google Scholar 

  • Miura M, Kitamura T (1979) Postsynaptic potentials recorded from medullary neurones following stimulation of carotid sinus nerve. Brain Res 162:261–272

    Article  PubMed  Google Scholar 

  • Miura M, Reis DJ (1968) Electrophysiological evidence that the carotid sinus nerve fibers terminate in the bulbar reticular formation. Brain Res 9:394–397

    Article  PubMed  Google Scholar 

  • Miura M, Reis DJ (1969a) Termination and secondary projections of the carotid sinus nerve in the cat brainstem. Am J Physiol 217:142–153

    PubMed  Google Scholar 

  • Miura M, Reis DJ (1969b) Cerebellum: A pressor response elicited from the fastigial nucleus and its efferent pathway in the brainstem. Brain Res 13:595–599

    Article  PubMed  Google Scholar 

  • Miura M, Reis DJ (1970) A blood pressure response from the fastigial nucleus and its relay pathway in the brainstem. Am J Physiol 219:1330–1336

    PubMed  Google Scholar 

  • Miura M, Reis DJ (1972a) The paramedian reticular nucleus: A site of inhibitory interaction between projections from fastigial nucleus and carotid sinus nerve acting on blood pressure. J Physiol (Lond) 216:441–460

    Google Scholar 

  • Miura M, Reis DJ (1972b) The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro-and chemoreceptors. J Physiol (Lond) 225:525–548

    Google Scholar 

  • Mohlant M (1910) Le nerv vagus: Les connexions anatomiques et la valeur functioneue en noyar en vagus. Nevraxe 11:131

    Google Scholar 

  • Morest PK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130:277–293

    Article  PubMed  Google Scholar 

  • Moruzzi G (1938) Azione del paleocerebellum sui riflessi vasomotori. Arch Fisiol 38:36–78

    Google Scholar 

  • Moruzzi G (1940) Paleocerebellum inhibition of vasomotor and carotid sinus reflexes. J Neurophysiol 3:20–32

    Google Scholar 

  • Moruzzi G (1947) Sham rage and localised autonomic responses elicited by cerebellar stimulation in the acute thalamic cat. Proc. IVII Internat Congress Physiol Oxford, pp 114–115

    Google Scholar 

  • Moruzzi G (1950) Problems in cerebellar physiology. Thomas, Springfield, Ill

    Google Scholar 

  • Nathan M (1972) Pathways in the medulla oblongata of monkeys mediating splanchnic nerve activity. Electrophysiological and anatomical evidence. Brain Res 45:115–126

    Article  PubMed  Google Scholar 

  • Nathan MA, Reis DJ (1975) Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of the anterior hypothalamus in the rat. Circ Res 37:226–235

    PubMed  Google Scholar 

  • Neil E, Palmer JF (1975) Effects of spontaneous respiration on the latency of reflex cardiac chronotropic responses to baroreceptor stimulation. J Physiol (Lond) 247:16

    Google Scholar 

  • Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218

    Article  PubMed  Google Scholar 

  • Norgren R, Leonard CM (1973) Ascending central gustatory pathways. J Comp Neurol 150:217–238

    Article  PubMed  Google Scholar 

  • Nosaka S (1976) Responses of rat brainstem neurons to carotid distension. Am J Physiol 231:20–27

    PubMed  Google Scholar 

  • Nosaka S, Yamamoto T, Yasunaga K (1979) Localization of vagal cardioinhibitory preganglionic neurons within the rat brain stem. J Comp Neurol 186:79–82

    Article  PubMed  Google Scholar 

  • Oberholzer RJH (1960) Circulatory centres in medulla and midbrain. Physiol Rev (Suppl 4) 40:179–195

    PubMed  Google Scholar 

  • Öberg B, Thoren P (1973a) Circulatory responses to stimulation of medullated and non-medullated vagal afferents in the cardiac nerve of the cat. Acta Physiol Scand 87:121–132

    PubMed  Google Scholar 

  • Öberg B, Thoren P (1973b) Circulatory responses to stimulation of left ventricular receptors in the cat. Acta Physiol Scand 88:8–22

    PubMed  Google Scholar 

  • Okada H, Okamoto K, Nishida I (1961a) The activity of the cardioregulatory and abdominal sympathetic nerves during swallowing. Jpn J Physiol 11:44–53

    PubMed  Google Scholar 

  • Okada H, Okamoto K, Nishida I (1961b) The activity of the cardioregulatory and abdominal sympathetic nerves in the cat in the Bainbridge reflex. Jpn J Physiol 11:520:529

    PubMed  Google Scholar 

  • Owsjannikow P (1871) Die tonischen und reflektorischen Zentren der Gefäßnerven. K. sächs. Ges der Wiss. Mathematischen-physische Klasse. Ber 23:135–147

    Google Scholar 

  • Paintal AS (1972) Cardiovascular receptors. In: Neil E (ed) Enteroreceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/1, pp 1–46)

    Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227

    PubMed  Google Scholar 

  • Palkovits M, Zaborsky L (1977) Neuroanatomy of central cardiovascular control. Prog Brain Res 47:9–34

    PubMed  Google Scholar 

  • Peiss CN (1965) Concepts of cardiovascular regulation; past, present, future. In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 154–197

    Google Scholar 

  • Pelletier CL, Clement DL, Shepherd JT (1972) Comparison of afferent activity of canine aortic and sinus nerves. Circ Res 31:557–568

    PubMed  Google Scholar 

  • Perez-Gonzalez JF, Rojas JR (1976) Inhibition of the baroreceptor input to cardiac vagal preganglionic neurones by stimulation of the medullary reticular formation. J Physiol (Lond) 263:152

    Google Scholar 

  • Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146:189–218

    Article  PubMed  Google Scholar 

  • Pitts RF, Bronk DW (1942) Excitability cycle of the hypothalamus-sympathetic neuron system. Am J Physiol 135:504–522

    Google Scholar 

  • Pitts RF, Larrabee MG, Bronk DN (1941) An analysis of hypothalamic cardiovascular control Am J Physiol 134:359–383

    Google Scholar 

  • Polosa C (1967) The silent period of sympathetic preganglionic neurons. Can J Physiol Pharmacol 45:1033–1045

    PubMed  Google Scholar 

  • Polosa C (1968) Spontaneous activity of sympathetic preganglionic neurons. Can J Physiol Biochem 46:587–896

    Google Scholar 

  • Porszasz J, Proszasz-Gibischer K (1968) Effect of blood pressure on single unit activity in bulbar reticular formation. Acta Physiol Acad Sci Hung 34:249–258

    PubMed  Google Scholar 

  • Porter R (1963) Unit responses evoked in the medulla oblongata by vagus nerve stimulation. J Physiol (Lond) 168:717–735

    PubMed  Google Scholar 

  • Preiss G, Polosa C (1977) The relation between end-tidal CO2 and discharge patterns of sympathetic preganglionic neurons. Brain Res 122:255–267

    Article  PubMed  Google Scholar 

  • Preiss G, Kirchner, F, Polosa C (1975) Patterning of sympathetic preganglionic firing by the central respiratory drive. Brain Res 87:363–374

    Article  PubMed  Google Scholar 

  • Preobrazhenski NN (1966) Microelectrode recordings of activity from neurons in vasomotor center. Fed Proc 25:T18–22

    Google Scholar 

  • Prichard BNC (1978) β-adrenergic receptor blockade in hypertension, past, present and future. Br J Clin Pharmacol 5:379–399

    PubMed  Google Scholar 

  • Przybyla AC, Wang SC (1967) Neurophysiological characteristics of cardiovascular neurons in the medulla oblongata of the cat. J Neurophysiol 30:645–660

    PubMed  Google Scholar 

  • Quest JA, Gebber GL (1972) Modulation of baroreceptor reflexes by somatic afferent stimulation. Am J Physiol 222:1251–1259

    PubMed  Google Scholar 

  • Reis DJ, Cuenod M (1965) Central neural regulation of carotid baroreceptor reflexes in the cat. Am J Physiol 209:1267–1277

    PubMed  Google Scholar 

  • Reis DJ, Doba N, Snyder DW, Nathan MA (1977) Brain lesions and hypertension; chronic lability and elevaton of arterial pressure produced by electrolytic lesions and 6-hydroxydopamine treatment of nucleus tractus solitari (NTS) in rat and cat. Prog Brain Res 47:169–188

    PubMed  Google Scholar 

  • Rethelyi M (1972) Cell and neurophil architecture of the intermediolateral (sympathetic) nucleus of the cat spinal cord. Brain Res 46:203–213

    Article  PubMed  Google Scholar 

  • Rhoton AL, O'Leary JL, Ferguson JP (1966) The trigeminal, facial and glossopharyngeal nerves in the monkey. Arch Neurol 14:530–540

    PubMed  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    Article  PubMed  Google Scholar 

  • Richter DW, Seller H (1975) Baroreceptor effects on medullary respiratory neurones of the cat. Brain Res 86:168–171

    Article  PubMed  Google Scholar 

  • Richter DW, Keck W, Seller H (1970) The course of inhibiton of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pfluegers Arch 317:110–123

    Article  Google Scholar 

  • Richter DW, Heyde F, Gabriel M (1975) Intracellular recordings from different types of medullary respiratory neurons of the cat. J Neurophysiol 38:1162–1171

    PubMed  Google Scholar 

  • Rijlant P (1936a) Le controle extrinsique de la frequence du battement cardiaque. CR Soc Biol (Paris) 123:99–101

    Google Scholar 

  • Rijlant P (1936b) L'arhythmie cardiaque respiratoire. CR Soc Biol (Paris) 123:997–1001

    Google Scholar 

  • Robertson TW, Wallach J, Schneiderman N, Neumann P (1976) Fiber origins of cervical vagus nerve in rabbits, cats and rhesus monkeys investigated by injection of horseradish peroxidase. Neurosci Abstr 2:175

    Google Scholar 

  • Rudomin P (1966) Pharmacolocial evidence for the existence of interneurones mediating primary afferent depolarisation in the solitary tract nucleus of the cat. Brain Res 2:181–183

    Article  PubMed  Google Scholar 

  • Rudomin P (1967a) Primary afferent depolarisation produced by vagal visceral afferents. Experientia 23:117–119

    Article  PubMed  Google Scholar 

  • Rudomin P (1967b) Presynaptic inhibiton induced by vagal afferent volleys. J Neurophysiol 30:964–981

    PubMed  Google Scholar 

  • Rudomin P (1968) Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus. Exp Brain Res 6:156–170

    Article  PubMed  Google Scholar 

  • Sakai K, Touret M, Salvert D, Leger L, Jouvet M (1977) Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res 119:21–41

    Article  PubMed  Google Scholar 

  • Salmoiraghi GC (1962) “Cardiovascular” neurones in the brainstem of cat. J Neurophysiol 25:182–197

    PubMed  Google Scholar 

  • Samodelov LF, Godehard E, Arndt JO (to be published) A comparison of the stimulus response curves of aortic and carotid sinus baroreceptors in decerebrate cats. Pfluegers Arch

    Google Scholar 

  • Saper C, Loewy AD, Swanson LW, Cowan WN (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  PubMed  Google Scholar 

  • Sato A, Schmidt RF (1973) Somato sympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53:916–947

    Google Scholar 

  • Schaeffer H (1960) Central control of cardiac function. Physiol Rev (Suppl 4) 40: 213–231

    PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB, Mollica A, Moruzzi G (1955) Convergence and interaction of afferent impulses on single units of reticular formation. J Neurophysiol 18:309–331

    PubMed  Google Scholar 

  • Scherrer H (1966) Inhibition of sympathetic discharge by stimulation of the medulla oblongata in the rat. Acta Neuroveg 29:56–74

    Article  Google Scholar 

  • Schmidt RF, Schönfuss K (1970) An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pfluegers Arch 314:175–198

    Article  Google Scholar 

  • Schramm LP Bignall KE (1971) Central neural pathways mediating active sympathetic muscle vasodilation in the cat. Am J Physiol 221:754–767

    PubMed  Google Scholar 

  • Schulte FJ, Henatsch HD, Busch G (1959) Über den Einfluß der Carotissinus-Sensibilität auf die spinal motorischen Systeme. Pfluegers Arch 269:248–263

    Article  Google Scholar 

  • Schwaber JS, Cohen DH (1978a) Electrophysiological and electron microscopic analysis of the vagus nerve of the pigeon, with particular reference to the cardiac innervation. Brain Res 147:65–78

    Article  PubMed  Google Scholar 

  • Schwaber JS, Cohen DH (1978b) Field potential and single unit analyses of the avian dorsal motor nucleus of the vagus and criteria for identifying vagal cardiac cells of origin. Brain Res 147:79–90

    Article  PubMed  Google Scholar 

  • Schwaber J, Schneiderman N (1975) Aortic nerve-activated cardioinhibitory neurons and interneurons. Am J Physiol 229:783–785

    PubMed  Google Scholar 

  • Schweitzer A (1935) Zur Frage der respiratorischen Arrhythmie. Verh Dtsch Ges Kreislaufforsch 8:148–153

    Google Scholar 

  • Schweitzer A, Wrights S (1937) Effects on the knee jerk of stimulation of the central end of the vagus and of various changes in the circulation and respiration. J Physiol (Lond) 88:459–475

    Google Scholar 

  • Sears T (1964) Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J Physiol (Lond) 174:295–315

    PubMed  Google Scholar 

  • Seller H (1973) The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pfluegers Arch 343:317–330

    Article  Google Scholar 

  • Seller H, Illert M (1969) The localisation of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pfluegers Arch 306:1–19

    Article  Google Scholar 

  • Seller H, Richter DW (1971) Some quantitative aspects of the central transmission of the baroreceptor activity. In: Kao FF, Koizumi K, Vasalle M (eds) Research in physiology, Gaggi, Bologna, pp 541–545

    Google Scholar 

  • Seller H, Langhorst P, Richter D, Koepchen HP (1968) Über die Abhängigkeit der pressorezeptorischen Hummung des Sympathicus von der Atemphase und ihre Auswirkung in der Vasomotorik. Pfluegers Arch 302:300–314

    Article  Google Scholar 

  • Shepherd JT (1973) Intrathoracic baroreflexes. Mayo Clin Proc 48:426–436

    PubMed  Google Scholar 

  • Smith OA (1965) Anatomy of central neural pathways mediating cardiovascular functions. In: Randall WC (ed) Nervous control of the heart. Williams & Wilkins, Baltimore, pp 34–53

    Google Scholar 

  • Smith OA (1974) Reflex and central mechanisms involved in the control of the heart and circulation. Ann Rev Physiol 36:93–123

    Article  Google Scholar 

  • Smith OA, Nathan MA (1966) Inhibition of carotid sinus reflex by inferior olive. Science 154:674–675

    PubMed  Google Scholar 

  • Smith RS, Pearce JW (1961) Microelectrode recordings from the region of the nucleus solitarius in the cat. Can J Biochem 39:933–939

    Google Scholar 

  • Smolen AJ, Truex RC (1977) The dorsal motor nucleus of the vagus nerve of the cat; localisation of preganglionic neurons by quantitative histological methods. Anat Rec 189:555–566

    Article  PubMed  Google Scholar 

  • Snyder DW, Gebber GL (1973) Relationships between medullary depressor region and central vasopressor pathways. Am J Physiol 225:1129–1137

    PubMed  Google Scholar 

  • Snyder DW, Nathan MA, Reis DJ (1978) Chronic lability of arterial pressure produced by selective destruction of the catecholamine innervation of the nucleus tractus solitarii in the rat. Circ Res 43:662–671

    PubMed  Google Scholar 

  • Spyer KM (1969) The central nervous organisation of the carotid sinus baroreceptor reflex. Ph.D. thesis, University of Birmingham

    Google Scholar 

  • Spyer KM (1972) Baroreceptor sensitive neurones in the anterior hypothalamus of the cat. J Physiol (Lond) 224:245–257

    PubMed  Google Scholar 

  • Spyer KM (1975) Organisation of baroreceptor pathways in the brainstem. Brain Res 87:221–276

    Article  PubMed  Google Scholar 

  • Spyer KM (1979) The baroreceptor control of vagal preganglionic activity. In: Brooks C Mc, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. University of Tokyo Press, Tokyo, pp 283–292

    Google Scholar 

  • Spyer KM, McAllen RM (1979) The interaction of central and peripheral inputs onto vagal cardiomotor neurones. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular systems. Springer, Berlin Heidelberg New York, pp 8–14

    Google Scholar 

  • Spyer KM, Wolstencroft JH (1971) Problems of the afferent input to the paramedial reticular nucleus, and the central connections of the sinus nerve. Brain Res 26: 411–414

    Article  PubMed  Google Scholar 

  • Stegemann J, Müller-Büton H (1966) Zur regeltheoretischen Analyse des Blutkreislaufs. I. Die zentrale Verrechnung der Signale aus den einzelnen Pressorezeptorenfeldern. Pfluegers Arch 287:247–256

    Article  Google Scholar 

  • Stroh-Werz M, Langhorst P, Camerer H (1976) Neuronal activity with relation to cardiac rhythm in the lower brainstem of the dog. Brain Res 106:293–305

    Article  PubMed  Google Scholar 

  • Stroh-Werz M, Langhorst P, Camerer H (1977a) Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. 1. Different discharge patterns related to the cardiac cycle. Brain Res 133:65–80

    Article  PubMed  Google Scholar 

  • Stroh-Werz M, Langhorst P, Camerer H (1977b) Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. II. Activity modulation in relationship to the respiratory cycle. Brain Res 133:81–93

    Article  PubMed  Google Scholar 

  • Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128:346–353

    Article  PubMed  Google Scholar 

  • Szentagothai J (1952) The general visceral efferent column of the brain stem. Acta Morphol Acad Sci Hung 2:313–328

    Google Scholar 

  • Szulczyk P (1976) Descending spinal sympathetic pathway utilized by somato-sympathetic reflex and carotid chemoreflex. Brain Res 112:190–193

    Article  PubMed  Google Scholar 

  • Szulczyk P, Trzebski A (1977) Effects of carotid chemoreceptor and baroreceptor stimulation upon the sympathetic preganglionic and postganglionic cardiac nerve and single fiber activity in cats. Acta Neurbiol Exp (warsz) 37:15–26

    Google Scholar 

  • Taylor DG, Gebber GL (1973) Sympathetic unit responses to stimulation of cat medulla. Am J Physiol 225:1138–1146

    PubMed  Google Scholar 

  • Taylor DG, Gebber GL (1975) Baroreceptor mechanisms controlling sympathetic nervous rhythms of central origin. Am J Physiol 228:1002–1013

    PubMed  Google Scholar 

  • Thomas MR, Calaresu FR (1972) Responses of single units in the medial hypothalamus to electrical stimulation of the carotid sinus nerve in the cat. Brain Res 44:49–62

    Article  PubMed  Google Scholar 

  • Thomas MR, Calaresu FR (1973) Hypothalamic inhibition of chemoreceptor-induced brady cardia in the cat. Am J Physiol 225:201–208

    PubMed  Google Scholar 

  • Thomas MR, Calaresu FR (1974a) Localization and function of medullary sites mediating vagus bradycardia. Am J Physiol 226:1344–1349

    PubMed  Google Scholar 

  • Thomas MR, Calaresu FR (1974b) Medullary sites involved in hypothalamic inhibition of reflex vagal bradycardia in the cat. Brain Res 80:1–16

    Article  PubMed  Google Scholar 

  • Thomas MR, Ulrichsen RF, Calaresu FR (1977) Function of lateral reticular nucleus in central cardiovascular regulation in the cat. Am J Physiol 232:157–166

    Google Scholar 

  • Timms RJ (1977) Cortical inhibition and facilitation of the defence reaction. J Physiol (Lond) 266:98–99

    Google Scholar 

  • Todo K, Yamamoto T, Satomi H, Ise H, Takata H, Takahashi I (1977) Origins of vagal preganglionic fibers to the sino-atrial and atrio-ventricular node regions in the cat heart as studied by the horseradish peroxidase method. Brain Res 130:545–550

    Article  PubMed  Google Scholar 

  • Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J Comp Neurol 106:51–141

    Article  PubMed  Google Scholar 

  • Torvik A (1957) The spinal projection from the nucleus of the solitary tract. An experimental study in the cat. J Anat 91:314–332

    PubMed  Google Scholar 

  • Trzebski A, Peterson LH (1964) The patterns of activity of the medullary respiratory neurones related to stimulation of the carotid body and carotid sinus receptors. In: Aviado DM (ed) Drugs and respiration. Pergamon Press, New York, pp 59–70

    Google Scholar 

  • Trzebski A, Peterson LH, Attinger F, Jones A, Tempest R (1962) Unitary responses in the medulla oblongata related to carotid sinus baroreceptor functions. Physiologist 5:222

    Google Scholar 

  • Wang SC, Borison HL (1974a) An analysis of the carotid sinus cardiovascular reflex mechanism. Am J Physiol 150:712–721

    Google Scholar 

  • Wang SC, Borison HL (1974b) Decussation of the pathways in the carotid sinus cardiovascular reflex. An example of the principle of convergence. Am J Physiol 150:722–728

    Google Scholar 

  • Wang SC, Chai CY (1962) Central control of sympathetic cardioacceleration in the medulla oblongata of the cat. Am J Physiol 202:31–34

    PubMed  Google Scholar 

  • Wang SC, Chai CY (1967) Central control of baroreceptor reflex mechanism. In: Kezdi P (ed) Baroreceptors and hypertension. Pergamon Press, Oxford, pp 117–130

    Google Scholar 

  • Ward DG, Baertschi AJ, Gann DS (1977) Neurones in medullary areas controlling ACTH: Atrial input and rostral projections. Am J Physiol 233:R116–126

    PubMed  Google Scholar 

  • Warner HR, Cox A (1962) A mathematical model of heart rate control of sympathetic and vagus efferent information. J Appl Physiol 17:349–355

    PubMed  Google Scholar 

  • Warzel H, Brattström A (1972) The effect of time of electrical stimulation of the carotid sinus on the amount of reduction in arterial pressure. Pfluegers Arch 337:39–44

    Article  Google Scholar 

  • Weidinger H, Hetzel R, Schaeffer H (1962) Aktionsströme in zentrifugalen vagalen Herznerven und deren Bedeutung für den Kreislauf. Pfluegers Arch 276:262–279

    Article  Google Scholar 

  • Weiss GK, Crill WE (1969) Carotid sinus nerve; primary afferent depolarisation evoked by hypothalamic stimulation. Brain Res 16:269–272

    Article  PubMed  Google Scholar 

  • Weiss GK, Kastella KG (1972) Medullary single unit activity: response to periodic pressure changes in the carotid sinus. Proc Soc Exp Biol 141:314–317

    Google Scholar 

  • Werz M, Mengel E, Langhorst P (1974) Extracellular recordings of single neurons in the nucleus of the solitary tract. In: Umbach H, Koepchen HP (eds) Centralrhythmic and regulation. Hippokrates, Stuttgart, pp 259–265

    Google Scholar 

  • Widdicombe JG (1961) Action potentials in parasympathetic efferent fibres to the lungs of the cat. Arch exp Pathol Pharm 241:415–432

    Google Scholar 

  • Widdicombe JG (1966) Action potentials in parasympathetic and sympathetic fibres to trachea and lungs of dogs and cats. J Physiol (Lond) 186:56–88

    PubMed  Google Scholar 

  • Wilson MF, Ninomiya I, Franz GN, Judy WV (1971) Hypothalamic stimulation and baroreceptor reflex interaction on renal nerve activity. Am J Physiol 221:1768–1773

    PubMed  Google Scholar 

  • Wurster RD (1977) Spinal sympathetic control of the heart. In: Randall WC (ed) Neural regulation of the heart. Oxford University Press, New York, pp 211–246

    Google Scholar 

  • Wurster RD, Trobiani S (1973) Effects of cervical sympathetic stimulation on carotid occlusion reflexes in cats. Am J Physiol 225:978–981

    PubMed  Google Scholar 

  • Wyszogrodski I, Polosa C (1973) The inhibition of sympathetic preganglionic neurons by somatic afferents. Can J Physiol Pharmacol 51:29–38

    PubMed  Google Scholar 

  • Yamashita H (1977) Effect of baro-and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res 126:551–556

    Article  PubMed  Google Scholar 

  • Ylitalo P, Karppanen H, Paasonen MK (1974) Is the area postrema a control centre of blood pressure? Nature 247:58–59

    Article  PubMed  Google Scholar 

  • Zanchetti A, Zoccolini A (1954) Autonomic hypothalamic outbursts excited by cerebellar stimulation. J Neurophysiol 17:475–483

    PubMed  Google Scholar 

  • Zandberg P, Palkovits M, Jong W de (1977) The area postrema and control of arterial blood pressure; absence of hypertension after excision of the area postrema in rats. Pfluegers Arch 372:169–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Spyer, K.M. (1981). Neural organisation and control of the baroreceptor reflex. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 88. Reviews of Physiology, Biochemistry and Pharmacology, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034536

Download citation

  • DOI: https://doi.org/10.1007/BFb0034536

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10408-7

  • Online ISBN: 978-3-540-38467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics