Skip to main content

Abstract

The primary afferent input to the most superficial part of the dorsal horn has been shown to originate from slowly conducting (Aδ and C) fibers. Recordings from individual slowly conducting myelinated (Burgess and Perl, 1967; Perl, 1968) and unmyelinated (Bessou and Perl, 1969; Beitel and Dubner, 1976; Kumazawa and Perl, 1977) fibers demonstrated that a large proportion of these small fibers required high threshold cutaneous stimulation for their activation and could be classified as various types of nociceptors. Thus, it follows that regions in which small diameter afferents terminate play a role in pain mechanisms. Christensen and Perl (1970), in a study designed specifically to discover cells responding to high-threshold mechanoreceptors, found a concentration of such cells in the marginal zone (lamina I) of the cat. Their report concluded that lamina I represents a specialized sensory nucleus containing neurons important for nociception and for detection of thermal changes in the skin (Christensen and Perl, 1970). Although some lamina I neurons appear to receive primary afferent input exclusively from nociceptors, others receive convergent input from a variety of peripheral receptors (Willis et al, 1974; Price and Browe, 1975; Cervero et al, 1976 Price et al 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABBOTT, F.V. AND MELZACK, R., (1982). Brain stem lesions dissociate neural mechanisms of morphine analgesia in different kinds of pain., Brain Research 251 , 149–155.

    Google Scholar 

  • ABOLS, I.A., BASBAUM, A.I., (1981). Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain., Journal of Comparative Neurology 201 , 285–297.

    Google Scholar 

  • APKARIAN, A.V., STEVENS, R.T., HODGE, C.J., (1987). The primate dorsolateral spinothalamic pathway., Society for Neuroscience Abstracts 13 , 580.

    Google Scholar 

  • ARONIN, N., DIFIGLIA M., LIOTTA, A.S., MARTIN, J.B., (1981) Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn., Journal of Neuroscience 1 , 561–577.

    Google Scholar 

  • BASBAUM, A.I., CLANTON, C.H., FIELDS, H.L., (1976). Opiate and stimulus- produced analgesia: functional anatomy of a medullospinal pathway., Proceedings of the National Academy of Science USA 73 , 4685–4688.

    Google Scholar 

  • BASBAUM, A.I., CLANTON, C.H., FIELDS, H.L., (1978). Three bulbospinal pathways from the rostral medulla of the cat., An autoradiographic study of pain modulating systems., Journal of Comparative Neurology 178, 209–224.

    Google Scholar 

  • BASBAUM, A.I., FIELDS, H.L., (1978). Endogenous pain control mechanisms: review and hypothesis. Annals of Neurology 4, 451–462.

    Article  Google Scholar 

  • BASBAUM, A.I., MARLEY, N.J.E., O’KEEFE, J., CLANTON, C.H., (1977). Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions., Pain 3 , 43–56.

    Google Scholar 

  • BEITEL, R.E., DUBNER, R., (1976). Responses of unmyelinated (C) polymodal nociceptors to thermal stimuli applied to monkey’s face., Journal of Neurophysiology 39 , 1160–1175.

    Google Scholar 

  • BESSOU, P., PERL, E.R., (1969). Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli., Journal of Neurophysiology 32 , 1025–1043

    Google Scholar 

  • BOWSHER, D. (1976). Role of the reticular formation in responses to noxious stimulation., Pain 2 , 361–378.

    Google Scholar 

  • BROWN, P.B., FUCHS, J.L., (1975). Somatotopic representation of hindlimb skin in cat dorsal horn., Journal of Neurophysiology 38 , 1–9.

    Google Scholar 

  • BURGESS, P.R., PERL, E.R., (1967). Myelinated afferent fibres responding specifically to noxious stimulation of the skin., Journal of Physiology 190 , 541–562.

    Google Scholar 

  • BURSTEIN, R., CLIFFER, K.D., GLESLER, G.J., Jr., (1987). Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon., Journal of Neuroscience 7 , 4159–4164.

    Google Scholar 

  • CARSTENS, E., TREVINO, D.L,. (1978). Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase., Journal of Comparative Neurology 182 , 151–166.

    Google Scholar 

  • CASEY, K.L., HALL, B.R., MORROW, T.J., (1981). Effect of spinal cord lesions on responses of cats to thermal pulses., Pain (Suppl. 1) , S130.

    Google Scholar 

  • CECHETTO, D.F., STANDAERT, D.G., SAPER, C.B., (1985). Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat., Journal of Comparative Neurology 240 ,153–160.

    Google Scholar 

  • CERVERO, F., IGGO, A., OGAWA, H. (1976) Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat., Pain 2 , 5–24.

    Google Scholar 

  • CERVERO, F., IGGO, A., MOLONY, V., (1979) Ascending projections of nociceptor- driven lamina I neurones in the cat., Experimental Brain Research 35, 135–149

    Article  Google Scholar 

  • CHI, C.C. (1970) An experimental silver study of the ascending projections of the central gray substance and adjacent tegmentum in the rat with observations in the cat, Journal of Comparative Neurology 139 , 259–270.

    Google Scholar 

  • CHO, H.J., BASBAUM, A.I., (1988). Increased staining of immunoreactive dynorphin cell bodies in the deafferented spinal cord of the rat., Neuroscience Letters 84, 125–130.

    Article  Google Scholar 

  • CHRISTENSEN, B.N., PERL, E.R., (1970). Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. Journal of Neurophysiology 33, 293–307.

    Google Scholar 

  • COFFIELD, J.A., MILETIC, V., (1987). Immunoreactive enkephalin is contained within some trigeminal and spinal neurons projecting to the rat medial thalamus., Brain Research 425, 38–383.

    Article  Google Scholar 

  • CRAIG, A.D., BURTON, H., (1981). Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center., Journal of Neurophysiology 45, 443–466.

    Google Scholar 

  • CRAIG, A.D., KNIFFKI, K.-D., (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat., Journal of Physiology 365, 197–221.

    Google Scholar 

  • CRUZ, L., BASBAUM, A.I., (1985). Multiple opioid peptides and the modulation of pain: immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat., Journal of Comparative Neurology 240, 331–348.

    Article  Google Scholar 

  • DELGADO, J.M.R., Rosvold, H.E., Looney, E. (1956). Evoking conditional fear by electrical stimulation of subcortical structures in the monkey brain., Journal of Comparative Physiology and Psychology 49, 373–380.

    Article  Google Scholar 

  • DILLY, P.N., WALL, P.D., WEBSTER, K.E., (1968) Cells of origin of the spinothalamic tract in the cat and rat., Experimental Neurology 21, 550–562.

    Article  Google Scholar 

  • EDWARDS, S.B., (1975). Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis., Journal of Comparative Neurology 161, 341–358.

    Article  Google Scholar 

  • EDWARDS, S.B., DEOLMOS, J.S. (1976). Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis., Journal of Comparative Neurology 165, 417–432.

    Article  Google Scholar 

  • FERRINGTON, D.G., SORKIN, L.S., WILLIS, W.D., (1987). Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord., Journal of Physiology 388, 681–703.

    Google Scholar 

  • FULWILER, C.E., SAPER, C.B., (1984). Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat., Brain Research Reviews 7, 229–259.

    Article  Google Scholar 

  • GALLAGER, D.W., PERT, A., (1978). Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Research 144, 257–275.

    Article  Google Scholar 

  • GIESLER, G.J., Jr., MENéTREY, D., GUILBAUD, G., BESSON, J.M., (1976). Lumbar cord neurons at the origin of the spinothalamic tract in the rat., Brain Research 118, 320–324.

    Article  Google Scholar 

  • GIESLER, G.J., Jr., MENéTREY, D., BASBAUM, A.I. (1979). Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat., Journal of Comparative Neurology 184, 107–125.

    Article  Google Scholar 

  • GIRARDOT, M.-N., BRENNEN, T.J., MARTINDALE, M.E., FOREMAN, R.D., (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T1-T5 spinothalamic tract neurons in the primate., Brain Research 409, 19–30.

    Article  Google Scholar 

  • GLAZER, E.J., BASBAUM, A.I., (1981) Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. Journal of Comparative Neurology 196, 377–389.

    Article  Google Scholar 

  • HARMANN, P.A., CARLTON, S.M., WILLIS, W.D., (1987). Collaterals of spinothalamic tract cells to the periaqueductal gray: a fluorescent double- labelling study in the rat. Brain Research 441, 87–97.

    Google Scholar 

  • HOPKINS, D.A., HOLSTEGE, G. (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat., Experimental Brain Research 32, 529–547

    Article  Google Scholar 

  • HU, J.W., DOSTROVSKY, J.O., SESSLE, B.J. (1981) Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). I. Responses to oral-facial noxious and non-noxious stimuli and projections to thalamus and subnucleus oralis. Journal of Neurophysiology 45, 173–192.

    Google Scholar 

  • HYLDEN, J.L.K., HAYASHI, H., BENNETH, G.J., DUBNER, R. (1985). Spinal lamina I neurons projecting to the parabrachial area of the cat midbrain., Brain Research 336, 195–198

    Article  Google Scholar 

  • HYLDEN, J.L.K., HAYASHI, H., BENNETH, G.J. (1986a). Lamina I spinomesencephalic neurons in the cat ascend via the dorsolateral funiculi., Somatosensory Research 4, 31–41.

    Article  Google Scholar 

  • HYLDEN, J.L.K., HAYASHI, H., DUBNER, R., BENNETH, G.J. (1986b). Physiology and morphology of the lamina I spinomesencephalic projection., Journal of Comparative Neurology 247, 505–515.

    Article  Google Scholar 

  • HYLDEN, J.L.K., HAYASHI, H. RUDA, M.A., DUBNER, R. (1986C). Serotonin innervation of physiologically identified lamina I projection neurons., Brain Research 370, 401–404.

    Google Scholar 

  • HYLDEN, J.L.K., NAHIN, R.L., DUBNER, R. (1987). Altered responses of nociceptive cat lamina I spinal dorsal horn neurons after chronic sciatic neuroma formation., Brain Research 411, 341–350.

    Article  Google Scholar 

  • HYLDEN, J.L.K., NAHIN, R.L., DUBNER, R. (1987). Altered responses of nociceptive cat lamina I spinal dorsal horn neurons after chronic sciatic neuroma formation., Brain Research 411, 341–350.

    Article  Google Scholar 

  • HYLDEN, J.L.K., NAHIN, R.L., TRAUB, R.J., DUBNER, R., (1988b). Physiological characterization of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation, (in preparation )

    Google Scholar 

  • JONES, M.W., HODGE, C.J., Jr., APKARIAN, A.V., STEVENS, R.T., (1985) A dorsolateral spinothalamic pathway in cat., Brain Research 335, 188–193

    Article  Google Scholar 

  • JONES, M.W., APKARIAN, A.V., STEVENS, R.T., Hodge, C.J. JR. (1987). The spinothalamic tract: an examination of the cells of origin of the dorsolateral and ventral spinothalamic pathways in cats. Journal of Comparative Neurology 260, 349–361.

    Article  Google Scholar 

  • JU, G., MELANDER, T., CECCATELLI, S., HOKFELT, T., FREY, P. Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat., Neuroscience 20, 439–456.

    Google Scholar 

  • KENNARD, M.A. (1954). The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli., Journal of Comparative Neurology 100, 511–524.

    Article  Google Scholar 

  • KHACHATURIAN, H., WATSON, S.J., LEWIS, M.E., COY, D., GOLDSTEIN, A., AKIL, H., (1982) Dynorphin immunocytochemistry in the rat central nervous system., Peptides 3, 941–954.

    Article  Google Scholar 

  • KISER, R.S., LEBOVITZ, R.M., GERMAN, D.C., (1978). Anatomic and pharmacologic differences between two types of aversive midbrain stimulation., Brain Research 155, 331–342.

    Article  Google Scholar 

  • KUMAZAWA, T., PERL, E.R., BURGESS, P.R., WHITEHORN, D., (1975) Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn., Journal of Comparative Neurology 162, 1–12.

    Article  Google Scholar 

  • KUMAZAWA, T., PERL, E.R., (1977) Primate cutaneous sensory units with unmyelinated (C) afferent fibers., Journal of Neurophysiology 40, 1325–1338.

    Google Scholar 

  • KURU, M. (1949), Sensory Paths in the Spinal Cord and Brain Stem. Tokyo: Sogensya.

    Google Scholar 

  • LIEBESKIND, J.C., GUILBAUD, G., BESSON, J.M., OLIVERAS, J.L. (1973) Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons., Brain Research 50, 441–446

    Article  Google Scholar 

  • LIEBMAN, J.M., MAYER, D.J., LIEBESKIND, J.C., (1970). Mesencephalic central gray lesions and fear-motivated behavior in rats., Brain Research 23, 353–370.

    Article  Google Scholar 

  • LIGHT, A.R., DURKOVIC, R.G., (1984) Features of laminar and somatotopic organization of lumbar spinal cord units receiving cutaneous inputs from hindlimb receptive fields., Journal of Neurophysiology 52, 449–458.

    Google Scholar 

  • LIGHT, A.R., CASALE, E.J., SEDIVEC, M., (1987) The physiology and anatomy of spinal laminae I and II neurons which project to the parabrachial region of the midbrain and pons. In Fine Afferent Nerve Fibers and Pain, eds. Schmidt, R.F et al pp. 347–356 Weinheim: VCH.

    Google Scholar 

  • LIU, R.P.C. (1983). Laminar origins of spinal projection neurons to the periaqueductal gray of the rat., Brain Research 264, 118–122.

    Article  Google Scholar 

  • LOEWY, A.D., BURTON, H. (1978). Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat., Journal of Comparative Neurology 181, 421–450.

    Article  Google Scholar 

  • MAIXNER, W., DUBNER, R., BUSHNELL, M.C., KENSHALO, D.R., Jr., OLIVERAS, J. L., (1986) Wide-dynamic-range dorsal horn neurons participate in the encoding process by which monkeys perceive the intensity of noxious heat stimuli., Brain Research 374, 385–388.

    Article  Google Scholar 

  • MCMAHON, S.B., WALL, P.D. (1983). A system of rat spinal cord lamina I cells projecting through the contralateral dorsolateral funiculus., Journal of Comparative Neurology 214, 217–223.

    Article  Google Scholar 

  • MCMAHON, S.B., WALL, P.D. (1985). Electrophysiological mapping of brainstem projections of spinal cord lamina I cells in the rat., Brain Research 333, 19–26.

    Article  Google Scholar 

  • MELZACK, R., CASEY, K.L. (1968) Sensory, motivational and central control determinants of pain. A new conceptual model., In The Skin Senses, ed. Kenshalo, D.R., pp. 423–443 Springfield, IL: Thomas.

    Google Scholar 

  • MENéTREY, D., BASBAUM, A.I., (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. Journal of Comparative Neurology 255, 439–450.

    Article  Google Scholar 

  • MENéTREY, D., BESSON, J.M. (1981) Electrophysiology and location of dorsal horn neurones in the rat, including cells at the origin of the spinoreticular and spinothalamic tracts. In Spinal Cord Sensation, Sensory Processing in the Dorsal Horn, eds. BROWN, A.G. and RETHELYI, M., pp. 179–188. Edinburgh: Scottish Academic Press.

    Google Scholar 

  • MENéTREY, D., CHAOUCH, A., BESSON, J.M., (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat., Journal of Neurophysiology 44, 862–877.

    Google Scholar 

  • MENéTREY, D., CHAOUCH, A., BINDER, D., BESSON, J.M., (1982) The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase., Journal of Comparative Neurology 206, 193–207.

    Article  Google Scholar 

  • MOLENAAR, I., KUYPERS, H.G.J.M. (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey., Brain Research 152, 429–450

    Google Scholar 

  • NAHIN, R.L. (1987). Immunocytochemical identification of long ascending peptidergic neurons contributing to the spinoreticular tract in the rat., Neuroscience 23, 859–869

    Article  Google Scholar 

  • NAHIN, R.L. (1988). Immunocytochemical identification of long ascending, peptidergic lumbar spinal neurons terminating in either the medial or lateral thalamus in the rat., Brain Research 443, 345–349

    Article  Google Scholar 

  • NAHIN, R.L., HYLDEN, J.L.K. (1986). Immunocytochemical investigations of long ascending somatosensory pathways in the rat and cat., Society for Neuroscience Abstracts 12, 228

    Google Scholar 

  • NAHIN, R.L., HYLDEN, J.L.K. (1986). Immunocytochemical investigations of long ascending somatosensory pathways in the rat and cat., Society for Neuroscience Abstracts 12, 228

    Google Scholar 

  • NASHOLD, B.S., Jr., WILSON, W.P., SLAUGHTER, D.G., (1969). Sensations evoked by stimulation in the midbrain of man., Journal of Neurosurgery 30, 14–24.

    Article  Google Scholar 

  • NORGREN, R. (1978). Projections from the nucleus of the solitary tract in the rat., Neuroscience 3, 207–218.

    Article  Google Scholar 

  • NORGREN, R., LEONARD, C.M., (1973). Ascending central gustatory pathways., Journal of Comparative Neurology 150, 217–238.

    Article  Google Scholar 

  • OLIVERAS, J.-L., BESSON, J.-M., GUILBAUD, G., LIEBESKIND, J.C., (1974) Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat., Experimental Brain Research 20, 32–44.

    Article  Google Scholar 

  • PANNETON, W.M., BURTON, H., (1985) Projections from the paratrigeminal nucleus and the medullary and spinal dorsal horns to the peribrachial area in the cat., Neuroscience 15, 779–797

    Article  Google Scholar 

  • PECHURA, C.M., (1987a). Lateral versus medial spinothalamic neurons and their axon collaterals to the periaqueductal gray and medullary reticular formation in the rat., Society for Neuroscience Abstracts 13, 113.

    Google Scholar 

  • PECHURA, C.M., (1987b) Laterally versus medially projecting spinothalamic neurons and their axon collaterals to the periaqueductal gray and medullary reticular formation in the rat., Uniformed Services University of the Health Sciences: Ph.D. dissertation.

    Google Scholar 

  • PERL, E.R. (1968) Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli., Journal of Physiology 197, 593–615.

    Google Scholar 

  • PRICE, D.D., BROWE, A.C., (1975). Spinal cord coding of graded non-noxious and noxious temperature increases., Experimental Neurology 48, 201–221.

    Article  Google Scholar 

  • PRICE, D.D., DUBNER, R., HU, J.W. (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face., Journal of Neurophysiology 39, 936–953.

    Google Scholar 

  • PRICE, D.D., HAYES, R.L., RUDA, M.A., DUBNER, R. (1978) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensation., Journal of Neurophysiology 41, 933–947.

    Google Scholar 

  • PUBOLS, L.M., GOLDBERGER, M.E., (1980). Recovery of function in dorsal horn following partial deafferentation., Journal of Neurophysiology 43, 102–117.

    Google Scholar 

  • REYNOLDS, D.V. (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164, 444–445.

    Article  Google Scholar 

  • Ruda, M.A. (1975). Autoradiographic study of the efferent projections of the midbrain central gray of the cat., University of Pennsylvania: Ph. D. dissertation.

    Google Scholar 

  • RUDA, M.A., IADAROLA, M.J., COHEN, L.V., YOUNG, S.W., III, (1988). In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proceedings of the National Academy of Science USA 85, 622–626.

    Article  Google Scholar 

  • SAPER, C.B., LOEWY, A.D., (1980). Efferent connections of the parabrachial nucleus in the rat., Brain Research 197, 291–317.

    Article  Google Scholar 

  • SAPER, C.B., SWANSON, L.W., COWAN, W.M., (1978). The efferent connections of the anterior hypothalamic area of the rat, cat and monkey., Journal of Comparative Neurology 182, 575–600.

    Article  Google Scholar 

  • SINNAMON, H.M. (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation of the diencephalon and mesencephalon., Physiology and Behavior 33, 191–199.

    Article  Google Scholar 

  • SKULTELY, F.M. (1963) Stimulation of periaqueductal gray and hypothalamus., Archives of Neurology 8, 608–620

    Google Scholar 

  • SPIEGEL, E.A., KLETZKIN, M., SZEKELY, E.G., (1954) Pain reactions upon stimulation of the tectum mesencephali., Journal of Neuropathology and Experimental Neurology 13, 212–220.

    Article  Google Scholar 

  • STANDAERT, D.G., WATSON, S.J., HOUGHTEN, R.A., SAPER, C.B. (1986) Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat., Journal of Neuroscience 6, 1220–1226.

    Google Scholar 

  • SWETT, J.E., WOOLF, C.J., (1985). The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord., Journal of Comparative Neurology 231, 66–77.

    Article  Google Scholar 

  • TREVINO, D.L. (1976) The origin and projections of a spinal nociceptive and thermoreceptive pathway. In Sensory Functions of the Skin of Primates with Special Reference to Man,, ed. Zotterman, Y., pp. 367–376. Oxford: Pergamon Press.

    Google Scholar 

  • VIERCK, C.J., Jr., COOPER, B.Y., FRANZEN, O., RITZ, L.A., GREENSPAN, J.D. (1983). Behavioral analysis of CNS pathways and transmitter systems involved in conduction and inhibition of pain sensations and reactions in primates., In Progress in Psychobiology and Physiological Psychology, Vol. 1, eds. Sprague, J. and Epstein, A., pp. 113–165. New York: Academic Press.

    Google Scholar 

  • VIERCK, C.J., Jr., GREENSPAN, J.D., RITZ, L.A., YOEMANS, D.C., (1985) The spinal pathways contributing to the ascending conduction and the descending modulation of pain sensations and reactions. In Spinal Systems of Afferent Processing, ed. YAKSH, T.L., pp. 275–329 New York: Plenum Press.

    Google Scholar 

  • VIERCK, C.J., Jr., HAMILTON, D.M., THORNBY, J.I. (1971) Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord., Experimental Brain Research 13, 140–158.

    Article  Google Scholar 

  • WIBERG, M., BLOMQVIST, A., (1984) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intraaxonal transport method., Brain Research 291, 1–18

    Article  Google Scholar 

  • WILLIS, W.D., KENSHALO, D.R., Jr., LEONARD, R.B., (1979). The cells of origin of the primate spinothalamic tract., Journal of Comparative Neurology 188, 543–574.

    Article  Google Scholar 

  • WILLIS, W.D., TREVINO, D.L., COULTER, J.D., MAUNZ, R.A., (1974). Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb., Journal of Neurophysiology 37, 358–372.

    Google Scholar 

  • YAKSH, T.L., YEUNG, J.C., RUDY, T.A., (1976). Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray., Brain Research 114, 83–103.

    Article  Google Scholar 

  • YEZIERSKI, R.P. and SCHWARTZ, R.H. (1986) Response and receptive field properties of spinomesencephalic tract (SMT) cells in the cat., Journal of Neurophysiology 55, 76–96.

    Google Scholar 

  • YEZIERSKI, R.P., SORKIN, L.S., WILLIS, W.D., (1987) Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey., Brain Research 437, 165–170.

    Article  Google Scholar 

  • ZEMLAN, F.P., LEONARD, C.M., KOW, L.M., PFAFF, D.W., (1978). Ascending tracts of the lateral columns of the rat spinal cord: a study using the silver impregnation and horseradish peroxidase techniques., Experimental Neurology 62, 298–334.

    Article  Google Scholar 

  • ZHANG, D., CARLTON, S.M., SORKIN, L.S., HARMANN, P.A., WILLIS, W.D., (1987). Collaterals of spinothalamic tract (STT) neurons to the PAG: a double labelling study in the monkey., Society for Neuroscience Abstracts 13, 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hylden, J.L.K., Nahin, R.L., Anton, F., Dubner, R. (1989). Characterization of Lamina I Projection Neurons: Physiology and Anatomy. In: Cervero, F., Bennett, G.J., Headley, P.M. (eds) Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0825-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0825-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8101-6

  • Online ISBN: 978-1-4613-0825-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics