Skip to main content

Fundamentals on Neuromagnetism

  • Chapter
Advances in Biomagnetism

Abstract

Although the first attempt to detect a magnetic signal associated with bioelectric activity in the human brain traces back to the late sixties, and was performed by means of a non-superconducting sensor (Cohen, 1968), it was only four years later than a SQUID was successfully used to record a human magnetic alpha rhythm with a satisfactory signal-to-noise ratio (Cohen, 1972). Some years later (Brenner et al., 1975), magnetic signals associated with brain activity evoked by peripheral sensory stimulation were also detected. Hughes and co-workers (1977) examined some cases of generalized epilepsy, but the identification of the most promising application of the neuromagnetic method in the clinical field, namely the study of focal epilepsy, was achieved by the independent work of two groups at the beginning of the nineteeneighties (Barth et al., 1982; Barth et al., 1984; and Modena et al., 1982; Chapman et al., 1983). During the last decade impressive progress have been achieved in the field of neuromagnetism. Fundamental understanding on the structural organization of primary areas in the human brain (Romani et al., 1982a; Pantev et al., 1988, Hari and Kaukoranta, 1985) has been accompanied by important findings on higher levels of brain functions, such as different sounds processing (Hari and Lounasmaa, 1989), or the effect of memory (Lounasmaa et al., 1989). The generators of some of the natural rhythms, like alpha and mu, have been found to be partly localized in specific cortical areas (Chapman et al., 1984) and, even more fascinating, they are likely to be synchronized in an impressive “resonant”, macroscopic response (Narici et al., 1987). The noninvasive investigation of focal epilepsy has proved to be a new, powerful tool for preoperative diagnosis in a widespread disease (Ricci et al., 1985; Rose et al., 1987). But also in more complex pathologies, such the photoconvulsive response in generalized epilepsy, the neuromagnetic investigation has provided significant new information (Ricci et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth, D.S., Sutherling, W., Engel Jr., J., and Beatty, J. (1982). Neuromagnetic localization of epileptiform spike activity in the human brain. Science. 218: 891–894.

    Article  PubMed  CAS  Google Scholar 

  • Barth, D.S., Sutherling, W., Engel Jr., J., and Beatty, J. (1984). Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science. 223: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, D., Williamson, S.J., and Kaufman, L. (1975). Visually evoked magnetic fields of the human brain. Science. 190: 480–482.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti, S., Baselli, D., Liberati, D., and Pavesi, G. (1987). Single sweep analysis of visual evoked potentials through a model of parametric identification. Biol. Cybern., 56: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R.M., Romani, G.L., Barbanera, S., Leoni, R., Modena, I., Ricci, G.B., and Campitelli, F. (1983). SQUID instrumentation and the relative covariance method for magnetic 3-D localization of pathological cerebral sources. Nuovo Cimento Lett., 38: 549–554.

    Article  Google Scholar 

  • Chapman, R.M., Ilmoniemi, R., Barbanera, S., and Romani, G.L. (1984). Selective localization of alpha brain activity with neuromagnetic measurements. Electroenceph. clin. Neurophvsiol., 58: 569–572.

    Article  CAS  Google Scholar 

  • Cohen, D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science, 161: 784–786.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D. (1972). Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science. 175: 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Erne’, S.N., Scheer, J.H., Hoke, M., Pantev, C., and Lütkenhöner, B. (1987). Brain stem auditory evoked magnetic fields in response to stimulation with brief tone pulses. Intern. J. Neurosci., 37: 115–125.

    Article  Google Scholar 

  • Erne’, S.N., Narici, L., Pizzella, V., and Romani, G.L. (1987). The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors. IEEE Trans. Magn. MAG-23: 1319–1322.

    Article  Google Scholar 

  • Erne’, S.N., Curio, G., Trahms, L., Trontelj, Z., and Aust, P. (1988). Magnetic activity of a single peripheral nerve in man. In: Atsumi, K., Kotani, M., Ueno, S., Katila, T., and Williamson, SJ. (Eds), Biomagnetism’87, Tokyo Denki University Press, 166–169.

    Google Scholar 

  • Gevins, A.S. (1984). Analysis of the electromagnetic signals of the human brain: milestones, obstacles, and goals. IEEE Trans. BME-31: 833–850.

    Google Scholar 

  • Hämäläinen, M.S., and Sarvas, J. (1987). Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phvs. Med. Biol., 32: 91–97.

    Article  Google Scholar 

  • Hämäläinen, M.S., and Sarvas, J. (1989). Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. BME-36: 165–171.

    Google Scholar 

  • Hari, R., and Kaukoranta, E. (1985). Neuromagnetic study of somatosensory system: Principles and examples. Prog. Neurobiol. 24: 233–256.

    Article  PubMed  CAS  Google Scholar 

  • Hari, R., and Ilmoniemi, R.J. (1986). Cerebral magnetic fields. CRC Critical Reviews in Biomed. Engineer., 14: 93–126.

    CAS  Google Scholar 

  • Hari, R., and Lounasmaa, O.V. (1989). Recording and interpretation of cerebral magnetic fields. Science, 244: 432–436.

    Article  PubMed  CAS  Google Scholar 

  • Hoke, M. (1988). SQUID-based measuring techniques-A challenge for the functional diagnostics in medicine. In: The art of measurement. Kramer, B. (Ed.), VCH Verlagsgesellschaft mbH, Weinheim, 287–335.

    Google Scholar 

  • Hoke, M., Feldmann, H., Pantev, C., Lütkenhöner, B., and Lehnertz, K. (1989). Objective evidence of tinnitus in auditory evoked magnetic fields. Hearing Res., 37: 281–286.

    Article  CAS  Google Scholar 

  • Hughes, J.R., Cohen, J., Mayman, C.I., Scholl, M.L., and Hendrix, D.E. (1977). Relationships of the magnetoencephalogram to abnormal activity in the electroencephalogram. J. Neurol., 217: 79–93.

    Article  PubMed  CAS  Google Scholar 

  • Knuutila, J., Ahonen, A.I., Hämäläinen, M.S., Ilmoniemi, R.J., and Kajola, M.J. (1985). Design considerations for multichannel SQUID magnetometers. In: Hahlbohm, H.D., and Lübbig, H. (Eds), SOUID85: Superconducting Quantum Interference Devices and their applications. Walter de Gruyter, Berlin-New York, 939–944.

    Google Scholar 

  • Lounasmaa, O.V., Hari, R., Joutsiniemi, S.-L., and Hämäläinen, M. (1989). Multi-SQUID recordings of human cerebral magnetic fields may give information about memory processes. Europhvs. Lett., 9: 603–608.

    Article  Google Scholar 

  • Modena, I., Ricci, G.B., Barbanera, S., Leoni, R., Romani, G.L., and Carelli, P. (1982). Biomagnetic measurements of spontaneous brain activity in epileptic patients. Electroenceph. clin. Neurophysiol., 54: 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Narici, L., Romani, G.L., Salustri, C., Pizzella, V., Modena, I., and Papanicolaou, A.C. (1987). Neuromagnetic evidence of synchronized spontaneous activity in the brain following repetitive sensory stimulation. Intern. J. Neurosci., 32: 831–836.

    Article  CAS  Google Scholar 

  • Narici, L., Modena, I., Peresson, M., Pizzella V., Romani, G.L., and Torrioli, G. (1988). Time, spatial, and frequency analysis of evoked field and synchronized spontaneous activity under repetitive visual stimulation. In: Atsumi, K., Kotani, M., Ueno, S., Katila, T., and Williamson, S.J. (Eds), Biomagnetism’87, Tokyo Denki University Press, 134–137.

    Google Scholar 

  • Narici, L., and Romani, G.L. (1989). Neuromagnetic investigation of synchronized spontaneous activity. Brain Topography, in press.

    Google Scholar 

  • Pantev, C., Hoke, M., Lenhertz, K., Lütkenhöner, B., Anogianakis, G., and Wittkowski, W. (1988). Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph. clin. Neurophysiol., 69: 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Pantev, C., Hoke, M., Lütkenhöner, B., Lenhertz, K., and Kumpf, W. (1989). Tinnitus remission objectified by neuromagnetic measurements. Hearing Res., 40: 261–264.

    Article  CAS  Google Scholar 

  • Regan, D. (1972). Evoked potentials in psychology, sensory physiology and clinical medicine. London, Chapman & Hall; New York, Wiley.

    Google Scholar 

  • Ricci, G.B., Leoni, R., Romani, G.L., Campitelli, F., Buonomo, S., and Modena, I. (1985). 3-D neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: Weinberg, H., Stroink, G., and Katila, T. (Eds), Biomagnetism: Applications and Theory. Pergamon Press, New York-Toronto, 304–310.

    Google Scholar 

  • Ricci, G.B., Chapman, R.M., Erne’, S.N., Narici, L., Peresson, M., Pizzella, V., Romani, G.L., Torrioli, G., and Cilli, M. (1989). Neuromagnetic topography of photoconvulsive response in man. Electroenceph. clin. Neurophvsiol., in press.

    Google Scholar 

  • Romani, G.L., Williamson, S J., and Kaufman, L. (1982a). Tonotopic organnization of the human auditory cortex. Science. 216: 1339–1340.

    Article  PubMed  CAS  Google Scholar 

  • Romani, G.L., Williamson, SJ., Kaufman, L., and Brenner, D. (1982b). Characterization of the human auditory cortex by the neuromagnetic method. Exp. Brain Res., 47: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Romani, G.L., and Leoni, R. (1985). Localization of cerebral sources with neuromagnetic measurements. In: Weinberg, H., Stroink, G., and Katila, T. (Eds), Biomagnetism: Applications and Theory, Pergamon Press, New York-Toronto, 205–220.

    Google Scholar 

  • Romani, G.L., and Rossini, P. (1988). Neuromagnetic functional localization: Principles, state of the art, and perspectives. Brain Topography, 1: 5–22.

    Article  PubMed  CAS  Google Scholar 

  • Rose, D.F., Smith, P.D., and Sato, S. (1987). Magnetoencephalography and epilepsy research. Science, 238: 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Rossini, P.M., Narici, L., Romani, G.L., Traversa, R., Cecchi, L., Cilli, M., and Urbano, A. (1989). Short latency somatosensory evoked responses to median nerve stimulation in healthy humans: electric and magnetic recordings. Intern. J. Neurosci. 46: 67–76.

    Article  CAS  Google Scholar 

  • Roth, B.J., Woosley, J.K., and Wikswo, J.P. Jr. (1985). An experimental and theoretical analysis of the magnetic field of a single axon. In: Weinberg, H., Stroink, G., and Katila, T. (Eds), Biomagnetism: Applications and Theory, Pergamon Press, New York-Toronto, 78–82.

    Google Scholar 

  • Swinney, K.R., and Wikswo, J.P. Jr.(1980). A calculation of the magnetic field of a nerve action potential. Biophvs. J., 32: 719–731.

    Article  CAS  Google Scholar 

  • Williamson, S J., and Kaufman, L. (1989). Theory of neuroelectric and neuromagnetic fields. In: Grandori, F., Hoke, M., and Romani, G.L. (Eds.), Auditory electric and magnetic fields, Karger, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Romani, G.L. (1989). Fundamentals on Neuromagnetism. In: Williamson, S.J., Hoke, M., Stroink, G., Kotani, M. (eds) Advances in Biomagnetism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0581-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0581-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7876-4

  • Online ISBN: 978-1-4613-0581-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics