Skip to main content

Imitation of Fusion Reactor Environment Effects on the Inner Elements of Spectroscopical, MM and Sub-MM Diagnostics

  • Chapter
Diagnostics for Experimental Thermonuclear Fusion Reactors

Abstract

This paper consists of two parts and concerns the influence of fusion reactor conditions on inner elements of some diagnostic systems. The first part is devoted to results of imitation experiments on the long-term operation of plasma-viewing mirrors, and in the second part there are discussed the results on a possibility to use carbon-graphite materials for fabricating the active elements of mm and sub-mm diagnostics (radiating and receiving antennae, reflectors). It is evident that results of the second part can be useful only in the case that carbon-based materials but not a beryllium will be chosen as the first wall protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S.Mukhovatov, H.Hopman, S.Yamamoto et al., ITER Diagnostics, ITER documentation series. No 33, Vienna 1990.

    Google Scholar 

  2. In Physics Design Description Document for the ITER Plasma, June 1995.

    Google Scholar 

  3. W.W.Heidbrink and Sadler, The behaviour of fast ions in tokamak experiments, Nucl. Fusion. 34: 535 (1994).

    Article  Google Scholar 

  4. J.S.Hartman, Optical effects of energetic copper-ion irradiation on copper mirrors, Appl. Optics. 20: 4062 (1981).

    Article  Google Scholar 

  5. V.S.Voitsenya, Yu.N.Borisenko, V.V.Bryk et al., Simulation of radiation effects on reflectors using heavy ion beams, J.Nucl. Mater. 212 – 215: 1640 (1994).

    Google Scholar 

  6. Yu.N.Borisenko, V.V.Bryk, V.V.Gann et al., Effect of MeV-range heavy ion irradiation on the properties of metallic mirrors, Plasma Devices and Operations. 3: 157 (1994).

    Article  CAS  Google Scholar 

  7. Y.Yamamura and H.Tawara, Energy dependence of ion-induce sputtering yields from monoatomic solids at normal incidence, Research Report NIFS-DATA-23, March 1995.

    Google Scholar 

  8. R.Blickensderfer, D.K.Deardorff and R.L.Linkoln, Normal total emittance at 400–850 K and normal spectral reflectance at room temperature of Be, Hf, Nb, Ta, Ti, V and Zr, Journal of the Less-Common Metals. 51: 13 (1977).

    Article  Google Scholar 

  9. C.W.Allen. Astrophysical Quantities. Publisher, University of London, The Athlone Press (1955).

    Google Scholar 

  10. D.W.Juenker, L.J.Le Blanc and C.R.Martin, Optical properties of some transition metals, JOSA. 58: 164 (1968)

    Google Scholar 

  11. J.K.Coulter, G.Hass, and J.B.Ramsey, Jr., Optical constants and reflectance and transmittance of evaporated rhodium films in the visible, JOSA. 63: 1149 (1973).

    Article  Google Scholar 

  12. S.Cohen, D.Ruzic, D.E.Voss et al., Measurements of low energy neutral hydrogen efflux during ICRF heating. - Preprint PPPL- 2133, Princeton, September 1984.

    Google Scholar 

  13. H. Verbeek and the ASDEX Team, Low energy neutral particle fluxes to the walls of ASDEX during He and D discharges, J.Nucl Mater. 145 – 147: 523 (1987)

    Google Scholar 

  14. D.J.Mazey. Fundamental aspects of high-energy ion-beam simulation techniques and their relevance to fusion material studies, J.Nucl.Mater. l74: 196 (1990).

    Article  Google Scholar 

  15. V.V.Chebotarev, I.P.Fomin, R.O.Pavlichenko et al., The prospects of using carbon-graphite materials as construction elements of the microwave plasma diagnostic in a fusion reactor, J.Nucl.Mater. 212 – 215: 1157 (1994).

    Google Scholar 

  16. V.L.Berezhnyj, V.S.Voitsenya and V.L.Ocheretenko, On possibility of graphite elements usage in submillimeter plasma diagnostics on fusion devices. - Preprint KFTI 93–31, Kharkov, 1993.

    Google Scholar 

  17. M.Nagatsu, N.Takada, T.Tsukishima and M.Shimada, Reflectivity measurements of graphite in the infrared and submillimeter wave regions, J.Nucl. Mater. 209: 204 (1994).

    Article  Google Scholar 

  18. T.Maruyama and M.Harayama, Neutron irradiation effect on thermal conductivity and dimensial change of graphite materials, J.Nucl.Mater. 195: 44 (1992).

    Article  Google Scholar 

  19. P.A.Platonov, V.J.Karpukhin, A.A.Mitrofanskii et al., Properties of neutron irradiated carbon-based materials for fusion reactor application, Plasma Devices and Operations. 3: 79 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Voitsenya, V.S. et al. (1996). Imitation of Fusion Reactor Environment Effects on the Inner Elements of Spectroscopical, MM and Sub-MM Diagnostics. In: Stott, P.E., Gorini, G., Sindoni, E. (eds) Diagnostics for Experimental Thermonuclear Fusion Reactors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0369-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0369-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8020-7

  • Online ISBN: 978-1-4613-0369-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics