Skip to main content

Oxygen Electrodes and Optodes and their Application In Vivo

  • Chapter
Oxygen Transport to Tissue XVII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 388))

Abstract

In the 1940s it was well known that the transport of oxygen within the tissue occurs by diffusion. Since by diffusional transport oxygen pressure gradients develop, the state of tissue oxygen supply can be characterized by the distribution of local pO2. At that time, however, it was only possible to measure mean tissue pO2. This was done by introducing e.g. a small gas bubble into the tissue1. After equilibration the bubble was withdrawn and analyzed by gas analysis. It was tried to understand these measurements by applying the cylindrical tissue model of Krogh2,3, but these measurements did not help much to understand the physiological presuppositions of anoxia or hypoxia because local tissue measurements were missing. The situation was changed when in 1942 P.W. Davies and F. Brink published their paper on “Microelectrodes for Measuring Local Oxygen Tension in Animal Tissue”4. This work was done in the laboratory of D.W. Bronk at the Johnson Foundation in Philadelphia, USA. The authors describe in great detail manufacturing and application of polarographic pO2 electrodes with a sensor surface of only 25 μm. Such a small sensor surface was needed because their aims were to measure “variations of oxygen tensions over small distances in tissues” to locate “sites of oxygen consumption by mapping concentration gradients” or “to measure the oxygen tension in blood of superficial arterioles and venules of the cat cerebral cortex, in the cortical substance itself, at the surface of muscle cells and at various distances from the surface of single celled organs”. About the development of this sensor Roseman, Goodwin and McCulloch mention in a footnote of their paper,5 that qualitative and quantitative polarographie analysis “was first employed in Dr. Bronk’s laboratory. By this method Brink and Davies determined the metabolism of the excised nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Campbell, Gas tensions in the tissues, Physiol. Rev. 11:1 (1931).

    CAS  Google Scholar 

  2. A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol. 52:509 (1919).

    Google Scholar 

  3. E Kreuzer, Oxygen supply to tissues: The Krogh modell and its assumptions, Experientia 38:1415(1982).

    Article  PubMed  CAS  Google Scholar 

  4. P.W. Davies. and E Brink jr., Microelectrodes for measuring local oxygen tensions in animal tissue, Rev. Scient. Instr. 13: 524(1942).

    Article  CAS  Google Scholar 

  5. E. Roseman, C.W. Goodwin and W.S. McCulloch, Rapid changes in cerebral oxygen tension induced by altering the oxygenation and circulation of the blood, J. Neurophysiol. 9:33 (1946).

    PubMed  CAS  Google Scholar 

  6. G.A. Millikan, Experiments on muscle haemoglobin in vivo: the instantanious measurement of muscle metabolism, Biol. Science 123:218 (1937).

    Article  CAS  Google Scholar 

  7. H.A. Laitinen and I.M. Kolthoff, A study of diffusion processes by electrolysis with microelectrodes, J. Am. Chem. Soc. 61:3344 (1939).

    Article  CAS  Google Scholar 

  8. A. Rémond, Aspects physiologiques de l’oxygene cortical, Rev. Neurol [Paris] 80:579 (1948).

    Google Scholar 

  9. P.W. Davies, The oxygen cathode, Phys. Techn. Biol. Res. 4:137 (1962).

    CAS  Google Scholar 

  10. D.W. Lubbers, H. Baumgärtl, H. Fabel, A. Huch, M. Kessler, K. Kunze, R. Riemann, D. Seiler, and S. Schuchhardt, Principle of construction and application of various platinum electrodes, Prog. Resp. Res. 3:136(1969).

    Google Scholar 

  11. I. Fatt. “Polarographie Oxygen Sensor”, CRC Press Inc. Cleveland, Ohio (1976).

    Google Scholar 

  12. F. Kreuzer, H.P. Kimmich and M. Brezina, Polarographic determination of oxygen in biological materials, in: “Medical and Biological Applications of Electrochemical Devices”, J. Kroyta, ed., John Wiley&Sons Ltd., New York (1980).

    Google Scholar 

  13. E. Gnaiger and H. Forstner. “Polarographic Oxygen Sensors”, Springer-Verlag, Berlin (1983).

    Google Scholar 

  14. V. Linek, J. Sinkule, and V. Vacek, Dissolved oxygen probes, in: “Comprehensive Biotechnology”, M. Moo-Young, ed., Pergamon Press, Oxford (1985).

    Google Scholar 

  15. E. A.H.Hall, The electrochemical sensor, in: “Medical Applications of Microcomputers”, WA. Corbett, ed., John Wiley&Sons Ltd., New York (1987).

    Google Scholar 

  16. H. Baumgärtl, W. Zimelka, D.W. Lubbers, pH changes in front of the hydrogen generating electrode during measurements with an electrolytic hydrogen cleareance sensor, Adv. Exp. Med. Biol. 277:107 (1990).

    PubMed  Google Scholar 

  17. L. Clark, Monitor and control of blood and tissue oxygen tension, Trans. Am. Soc. Artif. Intern. Organs 2:41 (1956).

    Google Scholar 

  18. J.S. Lundsgaard, J. GrØnlund, and H. Degn, Error in oxygen measurements in open systems owing to oxygen consumption in unstirred layer, Biotechnol. Bioengin. 20:809 (1978).

    Article  CAS  Google Scholar 

  19. E.A.H. Hall, The pulsed membrane gas electrode, in: “Neonatal Physiological Measurements”, P. Rolfe, ed., Butterworth (1986).

    Google Scholar 

  20. D.J. Gavaghan, J.S. Rollet and C.W. Hahn, Numerical simulation of the time-dependent current to membrane-covered oxygen sensors, J. Electroanal. Chem. 348:15 (1993).

    Article  CAS  Google Scholar 

  21. D.B. Cater, IA. Silver and G.M. Wilson, Apparatus and technique for the quantitative measurement of oxygen tension in living tissues, Proc. R. Soc. Lond. [Biol.] 151:256 (1959).

    Article  Google Scholar 

  22. H. Baumgärtl and D.W. Lubbers, Microcoaxial needle sensor for Polarographie measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties, in: “Polarograpic Oxygen Sensors”, E. Gnaiger and H. Forstner, eds, Springer-Verlag, Berlin (1983).

    Google Scholar 

  23. H. Baumgärtl, Systematic investigations of needle electrode properties in Polarographie measurements of local tissue pO2, in: “Clinical Oxygen Pressure Measurement”, A.M. Ehrly, J. Hauss and R. Huch, eds., Springer-Verlag, Berlin (1987).

    Google Scholar 

  24. W.J. Albery, W.N. Brooks, S.P. Gibson and CE.W Hahn, An electrode for PN2o and Po2 analysis in blood gas, J. Appl. Physiol. 45:637 (1978).

    CAS  Google Scholar 

  25. I. Bergmann, Amperometric oxygen sensors: problems with cathodes and anodes of metals other than silver, Analyst 110:365 (1985).

    Article  Google Scholar 

  26. W Fleckenstein and C.H. Weiss, A comparison of pO2-histograms from rabbit hindlimb muscles obtained by simultaneous measurements with hypodermic needle electrodes and with surface electrodes, Adv. Exp. Med. Biol. 169:447(1984).

    PubMed  CAS  Google Scholar 

  27. P. Boekstegers, M. Weiss and W. Fleckenstein. The effect of hypercapnia on the distributuion of pO2 values in resting muscle, in: “Clinical Oxygen Pressure Measurement II”, A.M. Ehrly, W. Fleckenstein, J. Hauss and R.Huch, eds., Blackwell Ueberreuther Wissenschaft, Berlin (1990).

    Google Scholar 

  28. W.J. Whalen, J. Riley and R Nair, A microelectrode for measuring intracellular pO2, J. Appi Physiol. 23:789 (1967).

    Google Scholar 

  29. D.G. Buerk and T.K. Goldstick, Analysis of the oxygen barrier in the arterial wall from recessed pO2 microelectrode measurements, Microvasc. Res. 17:69 (1979).

    Google Scholar 

  30. B.Yu, H. Baumgärtl and D.W. Lubbers, An improved Polarographie multiwire pO2 electrode, particularly for measurement of high pO2 values, Adv. Exp. Med. Biol. 169:877 (1984).

    PubMed  CAS  Google Scholar 

  31. G. Gust, K. Booij, W. Helder and B. Sundby, On the velocity sensitivity (stirring effect) of Polarographie oxygen microelectrodes, Netherland. J. Sea Res. 21(4):255 (1987).

    Article  CAS  Google Scholar 

  32. G Kortüm, “Reflexionsspektroskopie”, Springer Verlag, Berlin (1969).

    Google Scholar 

  33. J.R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Plenum Press, New York (1983).

    Google Scholar 

  34. K. Matthes, Untersuchungen über den Verlauf der Oxyhämoglobin Reduktion in der menschlichen Haut, Pflügers Arch. 246:70–91 (1942).

    Article  CAS  Google Scholar 

  35. G.G. Guilbaut, “Practical Fluorescence”, M. Dekker, New York (1973).

    Google Scholar 

  36. D.W. Lübbers, Fluorescence based chemical sensors, Adv. Biosens. 2:215–260 (1992).

    Google Scholar 

  37. O.S. Wolfbeis, Fiber optical fluorosensors in analytical chemistry, in: “Molecular Luminescence Spectroscopy: Methods and Applications”, Part II, S.G. Schulman, ed., Wiley, New York (1984).

    Google Scholar 

  38. H. Kautsky, Quenching of luminescence by oxygen, Trans. Faraday Soc. 35:216–219 (1932).

    Article  Google Scholar 

  39. O. Stern and M. Volmer, Über die Abklingzeit der Fluoreszenz, Physikal Z. 20:183 (1919).

    CAS  Google Scholar 

  40. I.B. Berlman, “Handbook of Fluorescence Spectra of Aromatic Molecules”, Academic Press, New York (1971).

    Google Scholar 

  41. I. Bergman, Rapid-response atmospheric oxygen monitor based on fluorescence quenching, Nature 218:396(1968).

    Article  CAS  Google Scholar 

  42. J.A. Knopp and I. Longmuir, Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid, Biochim. Biophys. Acta 279:393 (1972).

    PubMed  CAS  Google Scholar 

  43. W.M. Vaughan and G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence in water: a dynamic probe of the microenvironment, Biochemistry 9:464 (1970).

    Article  PubMed  CAS  Google Scholar 

  44. D.W. Lubbers and N. Opitz, The pO2-“optode”, a new tool to measure pO2 of biological gases and fluids by quantitative fluorescence photometry, Pflügers Arch. Suppl. 359: R145 (1975).

    Google Scholar 

  45. J.I. Peterson, R.V Fitzgerald and D.V. Buckhold, Fiber-optic probe for in vivo measurement of oxygen partial pressure, Anal. Chem. 56:62–67(1984).

    Article  PubMed  CAS  Google Scholar 

  46. M.E. Lippitsch, J. Pusterhofer, M.J.P. Leiner, and O.S. Wolfbeis, Fiber-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1 (1988).

    Article  CAS  Google Scholar 

  47. J.M. Vanderkooi, G. Maniara, T.J. Green and D.F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J. Biol. Chem. 262:5476 (1987).

    PubMed  CAS  Google Scholar 

  48. D.B. Papovsky, Luminescent porphyrins as probes for optical (bio)sensors, Sensors and Actuators B 11:293 (1993).

    Article  Google Scholar 

  49. E.D. Lee, T.C. Werner and WR. Seitz, Luminescence ratio indicators for oxygen, Anal. Chem. 59: 279 (1987).

    Article  CAS  Google Scholar 

  50. O.S. Wolfbeis, Oxygen sensors, in. “Fiber Optic Chemical sensors and Biosensors”, O.S. Wolfbeis, ed., CRC Press, Boca Raton.USA (1991).

    Google Scholar 

  51. A. Sharma and O.S. Wolfbeis, Fiber-optic oxygen sensor based on fluorescence quenching and energy transfer, Appi. Spectrosc. 42:1009 (1988).

    Article  CAS  Google Scholar 

  52. W.R. Seitz, Chemical sensors based on immobilized indicators and fiber optics. CRC Critical Reviews in Analytical Chemistry 19:135 (1988).

    CAS  Google Scholar 

  53. N. Opitz and D.W. Lubbers, Theory and development of fluorescence-based opto-chemical oxygen sensors: oxygen optodes, in: “Advances in Oxygen Monitoring”, K.K. Tremper and S.J. Barker, eds., Little Brown and Company, Boston (1987).

    Google Scholar 

  54. D.W. Lubbers, N. Opitz, P.P. Speiser, and H.J. Bisson, Nanoencapsulated fluorescence indicator molecules measuring pH and pO2 down to submicroscopical regions on the basis of the optode- principle, Z. Naturforsch. C. 32:133 (1977).

    PubMed  CAS  Google Scholar 

  55. D.W. Lubbers and N. Opitz, Optical fluorescence sensors for continuous measurement of chemical concentrations in biological systems, Sensors and Actuators 4:641 (1983).

    Article  Google Scholar 

  56. N. Opitz and D.W. Lubbers, Increased resolution power in pO2 analysis at low pO2 levels via sensitivity enhanced pO2 sensors (pO2 optodes) using fluorescence dyes, Adv. Exp. Med. Biol. 180:261 (1985).

    Google Scholar 

  57. Z. Zhujun and W.R. Seitz, Optical sensor for oxygen based on immobilized hemoglobin, Anal. Chem. 38:220(1985).

    Google Scholar 

  58. R.A. Wolthuis, S. McCrea, J.C. Haiti, E.Saaski, G.L. Mitchell, K. Garein and R. Willard, Development of a medical fiber-optic sensor based on optical absorption, IEEE Trans. Biomed. Eng. 39:185 (1992).

    Article  PubMed  CAS  Google Scholar 

  59. H.Y. Ebril and B.M Baysal, A new colorimetrie method for the determination of the “dissolved” oxygen permeability coefficients of polymeric membranes, J. Membr. Science 26:199 (1986).

    Article  Google Scholar 

  60. W. Müller, A. Winnefeld, O. Kohls, T. Scheper, W. Zimelka and H. Baumgärtl, Real and pseudo oxygen gradients in Ca-alginate beads monitored during Polarographie pO2 measurements using Pt- microelectrodes, Biotechnol. Bioeng. 44:617 (1994).

    Article  PubMed  Google Scholar 

  61. Y. Okada, K. Mückenhoff, G. Holtermann, H. Acker, and P. Scheid, Depth profiles of pH and pO2 in the isolated brain stem-spinal cord of the neonatal rat, Resp. Physiol. 93:315–326 (1993).

    Article  CAS  Google Scholar 

  62. D.W. Lubbers, H. Baumgärtl and W Zimelka, Heterogeneity and stability of local pO2 distribution within the brain tissue, Adv. Exp. Med. Biol. 345:567 (1994).

    PubMed  CAS  Google Scholar 

  63. D. Jamieson and H.A.S. van den Brenk, Comparison of oxygen tensions in normal tissue and yoshima sarcoma of the rat breathing air or oxygen at 4 atmospheres, Brit. J. Cancer 17:70 (1963).

    Article  PubMed  CAS  Google Scholar 

  64. K. Turek, K. Rakusan, J. Olders, L. Hoofd, and F. Kreuzer, Computed myocardial pO2 histograms: effects of various geometrical and functional conditions, J. Appi. Physiol. 70:1845–1853 (1991).

    CAS  Google Scholar 

  65. M. Höckel, K. Schienger, C. Knoop and P. Vaupel, Oxigenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements, Cancer. Res. 51:6098 (1991).

    PubMed  Google Scholar 

  66. K. van Rossem, H. Vermarien and R. Bourgain, Construction, calibration and evaluation of pO2 electrodes for chronicle implantation in rabbit brain cortex. Adv. Exp. Med. Biol. 316:85 (1992).

    Article  PubMed  Google Scholar 

  67. P. Boekstegers, J. Diebold and Ch. Weiss, Selective ECG synchronized suction and retroinfusion of coronary veins: first results of studies in acute myocardial ischemia in dogs, Cardiovasc. Res. 24:456 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. T.K. Hunt, A new method of determining tissue oxygen tension, Lancet 26:1370 (1964).

    Article  Google Scholar 

  69. K. Jonsson, J.A. Jensen, W.H. Goodson, H. Scheuenstuhl, J. West, H. Williams Hopf, and T.K. Hunt, Tissue oxygenation, anemia and perfusion in relation to wound healing in surgical patients, Annals of Surg. 214:605 (1991).

    Article  CAS  Google Scholar 

  70. A.P. Murphy and P. Rolfe, Intravascular oxygen sensor with polyetherurethane membrane: in vitro performance, Med.&Biol.Eng.&Comput. 30:121 (1992).

    Article  CAS  Google Scholar 

  71. L. Gehrich, D.W. Lubbers, N. Opitz, D.R. Hansmann, WW. Miller, J.K. Tusa and M. Yafuso, Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng., BME 33:117 (1986).

    Article  CAS  Google Scholar 

  72. S.J. Barker, K.K. Tremper, J. Hyatt, J. Zaccari, H.A. Heitzmann, B.M. Holman, K. Pike, L.S. Ring, M. Teope, and T.B. Thaure, Continuous fiberoptic arterial oxygen tension measurements in dogs, J. Clin. Monit. 3:48(1987).

    Article  PubMed  CAS  Google Scholar 

  73. B.A. Shapiro, R.D. Cane, CM. Chomka, L.E. Bandala and WT. Peruzzi, Preliminary evaluation of an intra- arterial blood gas system in dogs and humans, Crit. Care Med. 17:455 (1989).

    Article  PubMed  CAS  Google Scholar 

  74. B.E. Slain, RH. King and L. Schlain, Clinical evaluation-Continuous real-time intra-arterial blood gas monitoring during anesthesia and surgery by fiber optic sensor, Int. J. Clin. Monit. Comput. 9:45 (1992).

    Article  Google Scholar 

  75. A. Gottlieb, S. Divers and H.K. Hui, in vivo applications of fiberoptic chemical sensors, in: “Biosensors with Fiberoptics”, D.L. Wise and L.B. Wingard, eds.„ Humana Press, Lifton, NJ (1991).

    Google Scholar 

  76. D.W. Lubbers and N. Opitz, Die pCO2/pO2-Optode: Eine neue pCO2- bzw. pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flüssigkeiten. Z. Naturforsch. C. 30:532 (1975).

    PubMed  CAS  Google Scholar 

  77. J.S. Barker and J.H. Hyatt, Continuous measurement of intra-arterial pHa, paCO2 and paO2 in the operating room, Anesth. Analg. 73:43 (1991).

    PubMed  CAS  Google Scholar 

  78. N. Opitz, H.-J Graf and D.W. Lübbers, Oxygen sensor for the temperature range 300 to 500 K based on fluorescence quenching of the indicator-treated silicone membranes, Sensors and Actuators 13:159 (1988).

    Article  CAS  Google Scholar 

  79. M. Kessler and D.W. Lubbers, Aufbau und Anwendungsmöglichkeiten verschiedener pO2 Elektroden, Pflügers Arch. 291:82 (1966).

    Google Scholar 

  80. G. A. Holst, D.W. Lubbers and E. Voges, O2-flux-optode for medical application, SPIE Adv. Fluoresc. Sens. Technol. 1885:216(1993).

    CAS  Google Scholar 

  81. D.W. Lübbers, Chemical in vivo monitoring by optical sensors in medicine, Sensors and Actuators B 11:253 (1993).

    Article  Google Scholar 

  82. R. Huch, A. Huch and D.W. Lübbers, “Transcutaneous pO2”, Georg Thieme, Stuttgart (1981).

    Google Scholar 

  83. H. Haljamäe, I. Frid, J. Holm and S. Holm, Continuous conjunctival oxygen tension (pcjO2) monitoring for assessment of cerebral oxygenation and metabolism during carotid artery surgery, Acta Anaesthesiol 6. Scand. 33:610(1989).

    Article  Google Scholar 

  84. H.Karpf, H.W Kroneis, H.J. Marsoner, H. Metzler and N. Gravenstein, Fast responding oxygen sensor for respiratorial analysis, SPIE Chem. Biochem. Environmen. Sens 1172: 296 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Lübbers, D.W. (1996). Oxygen Electrodes and Optodes and their Application In Vivo . In: Ince, C., Kesecioglu, J., Telci, L., Akpir, K. (eds) Oxygen Transport to Tissue XVII. Advances in Experimental Medicine and Biology, vol 388. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0333-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0333-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8002-3

  • Online ISBN: 978-1-4613-0333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics