Skip to main content

Continuum of Change in RNA Virus Genomes

  • Chapter
Concepts in Viral Pathogenesis

Abstract

The mechanisms of evolution of RNA virus genomes have recently received less attention than the evolution of DNA genomes (or of RNA retroviruses able to reverse-transcribe their RNA genomes into DNA proviruses). The latter two virus groups can employ all of the myriad mutational and recombinational mechanisms of DNA evolution, which have been intensively investigated during the past decade. On the other hand the genomes of “ordinary,” nonretrovirus RNA viruses rarely, if ever, are reverse-copied into DNA, so they can neither integrate onto host chromosomes, nor recombine or transpose with other DNA elements. Yet the earlier studies of RNA virus genetics [1] showed that they are extremely mutable. The author and his colleagues recently published an extensive review of the literature documenting that RNA viruses not only exhibit very high mutation rates, but that their genomes undergo extremely rapid rates of evolution [2]. Space limitations prevent referencing herein most of the numerous studies upon which these conclusions are based, but the reader can obtain these from the above review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granoff A (1961) Induction of Newcastle disease virus mutants. Virology 13:402–408

    Article  PubMed  CAS  Google Scholar 

  2. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  PubMed  CAS  Google Scholar 

  3. Drake JW (1969) Comparative rates of spontaneous mutation. Nature 221:1132

    Article  PubMed  CAS  Google Scholar 

  4. Morley AA, Trainor KJ, Seshadri R, Ryall R (1983) Measurement of in vivo mutations in human lymphocytes. Nature 302:155–156

    Article  PubMed  CAS  Google Scholar 

  5. Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    Article  PubMed  CAS  Google Scholar 

  6. Pringle CR (1982) The genetics of vesiculoviruses. Arch Virol 72:1–34

    Article  PubMed  CAS  Google Scholar 

  7. Clewley JP, Bishop DHL, Kang CY, Coffin J, Schitzlein WM, Reichmann ME (1977) Oligonucleotide fingerprints of RNA species obtained from rhabdoviruses belonging to the vesicular stomatitis virus subgroup. J Virol 23:152–166

    PubMed  CAS  Google Scholar 

  8. Kew OM, Nottay BK, Hatch MH, Nakano JH, Obijeski JF (1981) Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol 56:337–347

    Article  PubMed  CAS  Google Scholar 

  9. Spindler KR, Horodyski FM, Holland JJ (1982) High multiplicities of infection favor rapid and random evolution of vesicular stomatitis virus. Virology 119:98–108

    Article  Google Scholar 

  10. King AMQ, McCahon D, Slade WR, Newman JWI (1982) Recombination in RNA. Cell 29:921–928

    Article  PubMed  CAS  Google Scholar 

  11. Tolskaya EA, Ramonova LA, Kolensnikova MS, Agol VI (1983) Intertypic recombination in poliovirus: Genetic and biochemical studies. Virology 124:121–132

    Article  PubMed  CAS  Google Scholar 

  12. Fields S, Winter G (1982) Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small virus RNA segment. Cell 28:303–313

    Article  PubMed  CAS  Google Scholar 

  13. Horodyski FM, Nichol ST, Sprindler KR, Holland JJ (1983) Properties of DI particle-resistant mutants of vesicular stomatitis virus isolated from persistent infections and from undiluted passages. Cell 33:801–810

    Article  PubMed  CAS  Google Scholar 

  14. O’Hara PJ, Horodyski FM, Nichol ST, Holland JJ (1984) Vesicular stomatitis virus mutants resistant to defective interfering particles accumulate stable 5′-terminal and fewer 3′-terminal mutations in a stepwise manner. J Virol 49:793–798

    PubMed  Google Scholar 

  15. Pringle CR, Devine V, Wilkie M, Preston CM, Dolan A, McGeoch DJ (1981) Enhanced mutability associated with a temperature sensitive mutant of vesicular stomatitis virus. J Virol 39:377–389

    PubMed  CAS  Google Scholar 

  16. Prabhakar BS, Hospel MW, McClintock PR, Notkins AL (1982) High frequency of antigenic variants among naturally occurring human Coxsackie B4 virus isolates identified by monoclonal antibodies. Nature 300:374–376

    Article  PubMed  CAS  Google Scholar 

  17. Printz P (1970) Adaptation du virus de la stomatite vésiculate à Drosophila melanogaster. Ann Inst Pasteur, Paris 119:520–537

    CAS  Google Scholar 

  18. Mudd JA, Leavitt RW, Kingsbury DT, Holland JJ (1973) Natural selection of mutants of vesicular stomatitis virus by cultured cells of Drosophila melanogaster. J Gen Virol 20:341–351

    Article  PubMed  CAS  Google Scholar 

  19. Jukes TH (1980) Silent nucleotide substitutions and the molecular evolutionary clock. Science 210:973–978

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Holland, J.J. (1984). Continuum of Change in RNA Virus Genomes. In: Notkins, A.L., Oldstone, M.B.A. (eds) Concepts in Viral Pathogenesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5250-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5250-4_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9756-7

  • Online ISBN: 978-1-4612-5250-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics