Skip to main content

Heavy Metal Toxicity Testing in Environmental Samples

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 142))

Abstract

Numerous toxic pollutants, such as heavy metals and organic compounds, arc being released to the environment as a result of increasing industrialization. Because of their abundance and toxicity, some heavy metals have been placed on the U.S. Environmental Protection Agency’s (USEPA) list of 129 priority pollutants (Keith and Telliard 1979). Most heavy metals, unlike organic contaminants, are not biotransformed and hence persist in the environment (Sterritt and Lester 1980; Hickey et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlf, W, Munawar, M (1988) Biological assessment of environmental impact of dredge material. In: Salomons, W, Forstner, U (eds) Chemistry and biology of solid wastes, dredged material and mine tailings. Springer-Verlag, New York, pp 127–142.

    Google Scholar 

  • Ajmal, M., Khan, AU (1984) Effect of water hardness on the toxicity of cadmium to microorganisms. Water Res 12: 1487–1491.

    Google Scholar 

  • Alsop, GM., Waggy, GT., Conway, RA (1980) Bacterial growth inhibition test. J Water Pollut Control Fed 52: 2452–2456.

    CAS  Google Scholar 

  • Altman, FP (1976) Tetrazolium salts: A consumer’s guide. Histochem J 8: 471–485.

    Article  PubMed  CAS  Google Scholar 

  • American Public Health Association (AFHA), AWWA, WPCF (1980) Bioassay methods for aquatic organisms. In: Greenberg, AE, Connors, JJ, Jenkins, D (eds) Standard methods for the examination of water and wastewater. Am Publ Hlth Assoc, Washington, DC, pp 615–743.

    Google Scholar 

  • Anderson, K, Koopman, B, Bitton, G (1988). Evaluation of INT-dehydrogenase assay for heavy metal inhibition of activated sludge. Water Res 22: 349–353.

    Article  CAS  Google Scholar 

  • Ankley, GT, Mattsonm, VR, Leonard, EN, West, CW, Bennett, JL (1993) Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid-volatile sulfide. Environ Toxicol Chem 12: 315–320.

    Article  CAS  Google Scholar 

  • Aqua Survey (1991) Daphnia magna IQ Toxicity Test Technical Information Updates. Aqua Survey, Inc., Flemington, NJ.

    Google Scholar 

  • Ball, IR (1967) The toxicity of cadmium to rainbow trout (Salmo gairdneri Rich). Water Res 1: 805–806.

    Article  CAS  Google Scholar 

  • Balsalobre, C, Calonge, J, Jimenez, E, Lafuente, R, Mourino, M, Munoz, MT, Riquelme, M (1993) Using the metabolic capacity of Rhodobacter sphaerodes to assess heavy metal toxicity. Environ Toxicol Water Qual 8: 437–450.

    Article  CAS  Google Scholar 

  • Baudo, R, Giesy, JP, Muntau, H (eds) (1990) Sediments: Chemistry and toxicity of in-place pollutants. Lewis Publishers, Ann Arbor, MI.

    Google Scholar 

  • Bauer, NJ, Seidler, RF, Knittel, MD (1981) A simple rapid bioassay for detecting effects of pollutants on bacteria. Bull Environ Contam Toxicol 27: 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Beckman Instruments (1981) Advantages of using several test times. In Microtox® Application Notes, Carlsbad. CA, Number M102.

    Google Scholar 

  • Berkowitz, D (1979) Potential uses of bacteria in toxicology. Vet Hum Toxicol 32: 422–426.

    Google Scholar 

  • Berner, DB (1986) Taxonomy of Ceriodaphnia (Crustacea: Cladocera) in U.S. Environmental Protection Agency Cultures. Report EPA/600/4-86/032. USEPA, Cincinnati, OH.

    Google Scholar 

  • Bills, TD, et al (1977) Effects of residues of polychlorinated Aroclor 1254 on sensitivity of rainbow trout to selected environmental contaminats. Prog Fish-Cult 39: 150. Cited in Brungs WA, Carltron RW, Horning WB, McCormick JH. Spehar RL, Lee Yount JD (1978) Effects of pollution of fresh water fish. J Water Pollut Control Fed 50: 1582 - 1637.

    Google Scholar 

  • Bitton G (1983) Bacterial and biochemical tests for assessing chemical toxicity in the aquatic environment: A review. CRC Crit Rev Environ Control 13: 51–67.

    Article  CAS  Google Scholar 

  • Bitton, G, Koopman, B, Wang, HD (1984) Baker’s yeast assay procedure for testing heavy metal toxicity. Bull Environ Contam Toxicol 32: 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Bitton, G, Dutka, BJ (eds) (1986) Toxicity testing using microorganisms. Vol. 1. CRC Press. Boca Raton, FL.

    Google Scholar 

  • Bitton, G., Khafif, T, Chataigner,N, Bastide, J, Coste, CM (1986) A direct INT-dehydrogenase assay (DIDHA) for assessing chemical toxicity. Tox Assess 1: 1–12.

    CAS  Google Scholar 

  • Bitton, G, Koopman, B (1986) Biochemical tests for toxicity screening. In: Bitton, G., Dutka, BJ (eds) Toxicity testing using microorganisms, Vol 1. CRC Press, Boca Raton. FL, pp 27–55.

    Google Scholar 

  • Bitton, G, Koopman, B (1992) Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev Environ Contam Toxicol 125: 1–22.

    PubMed  CAS  Google Scholar 

  • Bitton, G., Koopman, B., Agami, O (1992a) MetPAD™: A bioassay for rapid assessment of heavy metal toxicity in wastewater. Water Environ Res 64: 834–836.

    CAS  Google Scholar 

  • Bitton, G, Campbell, M, Koopman, B (1992b) MetPAD™: A bioassay kit for the specific determination of heavy metal toxicity in sediments from hazardous waste sites. Environ Toxicol Water Qual 7: 323–328.

    Article  CAS  Google Scholar 

  • Bitton, G (1994) Wastewater microbiology. Wiley-Liss, New York.

    Google Scholar 

  • Bitton, G, Jung, K, Koopman, B (1994) Evaluation of a microplate assay specific for heavy metal toxicity. Arch Environ Contam Toxicol 27: 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Bitton, G, Jung, K, Koopman, B (1994) Evaluation of a microplate assay specific for heavy metal toxicity. Arch Environ Contam Toxicol 27: 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Blaise, C., Legault, R, Bermmgham, N, van Coillie, R, Vasseur, P (1986) A simple microplate algal assay technique for aquatic toxicity assessment. Tox Assess 1: 261–281.

    Article  CAS  Google Scholar 

  • Blaise, C, Forghani, R, Uguault, R, Guzzo, J, Dubow, MS (1994) A bacterial toxicity assay performed with microplates, microluminomctry. and Microtox® reagent. Biotechniques 16: 932–937.

    PubMed  CAS  Google Scholar 

  • Blaise, CR (1993) Practical laboratory applications with micro-algae for hazard assessment of aquatic contaminants. In: Richardson, M (ed) Ecotoxicology monitoring. VCH, Weinheim, pp 83–107.

    Google Scholar 

  • Blom, A, Harder, W, Matin, A (1992) Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol 58: 331–334.

    PubMed  CAS  Google Scholar 

  • Buikema, AL, Geiger, JG, Lee, DR (1980) Daphnia toxicity tests. In: Buikema, AL, Cairns, J (eds) Aquatic invertebrates bioassays, STP 715. Am Soc Test Mat, Philadelphia, PA, pp 48–69.

    Chapter  Google Scholar 

  • Bulich, AA, Greene, MW, Isenberg, DL (1981) Reliability of the bacterial luminescence assay for determination of the toxicity of pure compounds and complex effluents. In: Branson, DR, Dickson, KL (eds) Aquatic toxicology and hazard assessment, 4th conf, STP 737. Am Soc Test Mat, Philadelphia, PA, pp 338–347.

    Chapter  Google Scholar 

  • Bulich, AA., Greene, MW., Isenberg, DL (1982) A practical and reliable method for monitoring the toxicity of aquatic samples. Process Biochem 17: 45–47.

    Google Scholar 

  • Bulich, AA (1986) Bioluminescent assays. In: Bitton, G., Dutka, BJ (eds) Toxicity testing using microorganisms. Vol 1. CRC Press, Boca Raton, FL, pp 57–74.

    Google Scholar 

  • Burkhard, LP, Ankley, GT (1989) Identifying toxicants: NETACs toxicity-based approach. Environ Sci Technol 23: 1438–1443.

    Article  CAS  Google Scholar 

  • Byoung-Kwan, K, Daniels, L (1994) The exposure of methanogens to Cu2+ increases the level of specific proteins in the culture supernatant. In Proc 94th Gen Meet, Am. Soc. Microbiol., Las Vegas, NV. May 23–27, 1994, Abstract # Q–96.

    Google Scholar 

  • Cairns, J, Dikson, KL, Westlake, GF (eds) (1976) Biological monitoring of water and effluent quality, ASTM STP 607. Am Soc Test Mat. Philadelphia. PA, p 246.

    Google Scholar 

  • Calamari, D, Marchetti, R, Vailati, G (1980) Influence of water hardness on cadmium toxicity to Salmo gairdneri. Water Res 14: 1421–1426.

    Article  CAS  Google Scholar 

  • Callahan, CA., Menzie, CA., Burmaster, DE., Wilborn, DC, Ernst, T (1991) On-site methods for assessing chemical impact on the soil environment using earthworms: A case study at the Baird and McGuire superfund site, Holbrook, Massachusetts. Environ Toxicol Chem 10: 817–826.

    Article  CAS  Google Scholar 

  • Campbell, M, Bitton, G, Koopman, B (1993) Toxicity testing of sediment elutriates based on inhibition of α-glucosidase biosynthesis in Bacillus licheniformi. Arch Environ Contam Toxicol 24: 469–472.

    Article  CAS  Google Scholar 

  • Campbell, PGC, Stokes, PM (1985) Acidification and toxicity of metals to aquatic biota. Can J Fish Aquat Sci 42: 2034–2049.

    Article  CAS  Google Scholar 

  • Casida, JR, Klein, LE, Santoro, T (1964) Soil dehydrogenase activity. Soil Sci 98: 371–376.

    Article  CAS  Google Scholar 

  • Cenci, G, Morozzi, G (1979) The validity of the TTC-test for dehydrogenase activity of activated sludges in the presence of chemical inhibitors. Zbl Bakt Hyg, I Abt Orig B 169: 320–330.

    CAS  Google Scholar 

  • Chander, K, Brookes, PC (1991) Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper-contaminated soils? Soil Biol Biochem 23: 909–915.

    Article  CAS  Google Scholar 

  • Codina, JC, Romero, PP., de Vicente, A (1993) A comparison of microbial bioassays for the detection of metal toxicity. Arch Environ Contam Toxicol 25: 250–254.

    CAS  Google Scholar 

  • Coleman, RN, Qureshi, AA (1985) Microtox and Spirillum volutans tests for assessing toxicity of environmental samples. Bull Environ Contam Toxicol 35: 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Corbisier, P, Diels, L., van der Lelie, D, Mergeay, M (1993) Bioluminescent biosensors for the detection of heavy metals or xenobiotic compounds. In: Proc. 6th Int Symp Toxicity Assessment and On-line Monitoring, Berlin University of Technology, May 10–14, 1993, p 58.

    Google Scholar 

  • Dave, G (1992) Sediment toxicity in lakes along the river Kolbacksan. central Sweden. Hydrobiologia 235/236:419–433.

    Google Scholar 

  • de Zwart, D., Sloof, W (1983) The Microtox as an alternative assay in the acute toxicity assessment of water pollutants. Aquatic Toxicol 4: 129–138.

    Article  Google Scholar 

  • Dickson, KL, Maki, AW, Brungs, WA (eds) (1987) Fate and effects of sediment- bound chemicals in aquatic systems. Pergamon Press, Toronto.

    Google Scholar 

  • Di Toro, DM, Mahony, JD, Hansen, DJ., Scott, KJ., Hicks, MB., Mayr, SM., Redmond, MS (1990) Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environ Toxicol Chem 9: 1487–1502.

    Article  Google Scholar 

  • Di Toro, DM., Mahony, JD., Hansen, DJ, Scott, KJ, Carison, AR, Ankley, GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26: 96 - 101.

    Article  Google Scholar 

  • Donkin, SG., Dusenbery, DB (1993) A soil toxicity test using the nematode Caenor-habtidis elegans and an effective method of recovery. Arch Environ Contam Toxicol 25: 145–151.

    Article  CAS  Google Scholar 

  • Dutka, BJ., Kwan, KK (1981) Comparison of three microbial toxicity screening tests with the Microtox test. Bull Environ Contam Toxicol 27: 753–757.

    Article  PubMed  CAS  Google Scholar 

  • Dutka, BJ, Kwan, KK (1984) Studies on a synthetic activated sludge toxicity screening procedure with comparison to three microbial toxicity tests. In Dickson, L, Dutka, BJ (eds) Toxicity screening procedures using bacterial systems. Marcel Dekker, New York, pp 125–138.

    Google Scholar 

  • Dutka, BJ, Nyholm, N, Petersen, J (1983) Comparison of several microbiological toxicity screening tests. Water Res 17: 1363–1368.

    Article  CAS  Google Scholar 

  • Dutton, RJ, Bitton, G, Koopman, B (1983) Malachite green-INT (MINT) method for determining active bacteria in sewage. Appl Environ Microbiol 46: 1263–1267.

    PubMed  CAS  Google Scholar 

  • Dutton, RJ, Bitton, G, Koopman, B (1986a) Application of a direct microscopic method for the determination of active bacteria in lakes. Water Res 20: 1461–1464.

    Article  Google Scholar 

  • Dutton, RG, Bitton, G., Koopman, B (1986b) Rapid test for toxicity in wastewater systems. Tox Assess 1: 147–158.

    Article  CAS  Google Scholar 

  • Dutton, RG, Bitton, G., Koopman, B (1988) Enzyme biosynthesis versus enzyme activity as a basis for microbial toxicity testing. Tox Assess 3: 245–254.

    Article  CAS  Google Scholar 

  • Dutton, RG, Bitton, G, Koopman, B, Agami, O (1990) Effect of environmental toxicants on enzyme biosynthesis: A comparison of Ăź-galactosidase, α-glucosidase and tryptophanase. Arch Environ Contam Toxicol 19: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Elder, JF (1990) Applicability of ambient toxicity testing to national or regional water quality assessment. Circular 1049. U.S. Geological Survey, Denver, CO.

    Google Scholar 

  • Elnabarawy, MT (1986) Short-term microbial and biochemical assays for assessing chemical toxicity. Haz Sub 2: 11–14.

    Google Scholar 

  • Elnabarawy, MT, Robideau, RR, Beach, SA (1988) Comparison of three rapid toxicity lest procedures: Microtox, Polytox, and activated sludge respiration inhibition. Tox Assess 3: 361–370.

    Article  CAS  Google Scholar 

  • Fischer, RB., Peters, D (1968) Quantitative chemical analysis, 3rd ed. Saunders, Philadelphia.

    Google Scholar 

  • Fiskesjo, G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102: 99–112.

    Article  PubMed  CAS  Google Scholar 

  • Fiskesjo, G (1993) Allium test I: A 2–3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L). Environ Toxicol Water Qual 8: 461–470.

    Article  Google Scholar 

  • Flemming, CA, Trevors, JT (1989) Copper toxicity and chemistry in the environment: A review. Water Air Soil Pollut 44: 143–158.

    Article  CAS  Google Scholar 

  • Folsom, BR., Popescu, NA, Wood, JM (1986) Comparative study of aluminum and coppcr transport and toxicity in an acid-tolerant freshwater green alga. Environ Sri Technol 20: 616–620.

    Article  CAS  Google Scholar 

  • Forstner, U (1990) Contaminated sediments. In: Lecture Notes in Earth Science, Vol 21. Springer-Verlag, Berlin.

    Google Scholar 

  • Gadd, GM, Griffiths, AJ (1978) Microorganisms and heavy metal toxicity. Microbiol Ecol 4: 303–317.

    Article  CAS  Google Scholar 

  • Gala, WR, Giesy, JP (1990) Flow cytometric techniques to assess toxicity to algae. In: Landis, WG, van der Schalie, WH (eds) Aquatic toxicology and risk assessment: thirteenth volume, ASTM STP 1096. Am Soc Test Mat, Philadelphia, PA, pp 237–246.

    Chapter  Google Scholar 

  • Goatcher, LJ, Qureshi, AA, Gaudet, ID (1984) Evaluation and refinement of the Spirillium volutans test for use in toxicity screening. In: Liu, D., Dutka, BJ (eds) Toxicity screening procedures using bacterial systems. Marcel Dekker, New York, pp 89–108.

    Google Scholar 

  • Greene, JC., Miller, WE, Shiroyama, T, Maloney, TE (1975) Utilization of algal assays to assess the effects of municipal, industrial and agricultural wastewater effluents upon phytoplankton production of the Snake River system. Water Air Soil Pollut 4: 415–434.

    Article  CAS  Google Scholar 

  • Greene, JC, Miller, WE, Debacon, MK, Long, MA, Bartels, CL (1985) A comparison of three microbial assay procedures for measuring toxicity of chemical residues. Arch Environ Contam Toxicol 14: 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Hale, JG (1977) Toxicity of metal mining wastes. Bull Environ Contam Toxicol 17: 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Hart, BT (1981) Trace metal complcxing capacity of natural waters: A review. Environ Technol Lett 2: 95–110.

    Article  CAS  Google Scholar 

  • Hastings, JW (1978) The chemistry and biology of bacterial light emission. Photochem Photobiol 27: 397–404.

    Article  CAS  Google Scholar 

  • Hickey, CW, Blaise, C, Costan, G (1991) Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Seknasirum capricornutum to selected chemicals. Environ Toxicol Water Qual 6: 383–403.

    Article  CAS  Google Scholar 

  • Hickey, RF, Vanderwielen, J, Switzenbaum, MS (1989) The effect of heavy metals on methane production and hydrogen and carbon monoxide levels during batch anaerobic sludge digestion. Water Res 23: 207–218.

    Article  CAS  Google Scholar 

  • Hirose, K (1990) Chemical speriation of trace metals in seawater: Implication of particulate trace metals. Mar Chem 28: 267–273.

    Article  CAS  Google Scholar 

  • Hockett, JR., Mount, DR (1990) Use of metal chelating agents to differentiate among sources of toxicity. In: Proc Soc Environ Toxicol Chem 11th Ann Meeting, Washington. DC. Nov. 1990.

    Google Scholar 

  • Hung, Y-W (1982) Effects of temperature and chelating agents on cadmium uptake in the American Oyster. Bull Environ Contam Toxicol 28: 546–551.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, TC, Stokes, PM (1975) Heavy metal toxicity and algal bioassay. In: Water quality parameters. STP 563. Am Soc Test Mat, Philadelphia. PA, pp 320–343.

    Chapter  Google Scholar 

  • Janssen, CR, Persoone, G (1993) Rapid toxicity screening tests for aquatic biota. 1. Methodology and experiments with Daphnia magna. Environ Toxicol Chem 12: 711–717.

    CAS  Google Scholar 

  • Jenner, HA, Janssen-Mommen, JPM (1993) Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch Environ Contam Toxicol 25: 3–11.

    Article  CAS  Google Scholar 

  • Johansson-Sjobeck, ML, Larsson, A (1979) Effects of inorganic lead on delta- aminolevulinic acid dehydratase activity and hematological variables in the rainbow trout, Salmo gairdneri. Arch Environ Contam Toxicol 8: 419–431.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, RB, Gilmour, CC, Stoner, DL, Weir, MM, Tuttle, JH (1984) Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Appl Environ Microbiol 47: 1005–1011.

    PubMed  CAS  Google Scholar 

  • Jones, FV, Moffitt, CM, Bettge, W, Leuterman, AJJ, Garrison, R (1986) Drilling fluids firms respond to EPA toxicity concentration. Oil Gas J 84: 71–78.

    Google Scholar 

  • Joubert, G (1980) A bioassay application for quantitative toxicity measurements using the green alga Selenaslrvm capricornufum. Water Res 14: 1759–1763.

    Article  CAS  Google Scholar 

  • Joubert, G (1980) A bioassay application for quantitative toxicity measurements using the green alga Selenaslrvm capricornufum. Water Res 14: 1759–1763.

    Article  CAS  Google Scholar 

  • Katayama-Hirayama, K (1986) Inhibition of the activities of 0-galactosidase and dehydrogenases of activated sludge by heavy metals. Water Res 20: 491–494.

    Article  CAS  Google Scholar 

  • Keith, LH, Telliard, WA (1979) Priority pollutants: a perspective view. Environ Sci Technol 13: 416–423.

    Article  Google Scholar 

  • Kennicut, MC (1980) ATP as an indicator of toxicity. Water Res 14: 225–228.

    Article  Google Scholar 

  • Khangarot, BS, Ray, PK (1987) Correlation between heavy metal acute toxicity values in Daphnia magna and fish. Bull Environ Contam Toxicol 38: 722–726.

    Article  PubMed  CAS  Google Scholar 

  • King, EF, Dutka, BJ (1986) Respirometric techniques. In: Bitton, G, Dutka, BJ (eds) Toxicity testing using microorganisms. Vol 1, CRC Press, Boca Raton, FL, pp 75–113.

    Google Scholar 

  • Klaine, SJ, Wall, TD., Warren, JE (1993) Heavy metal bioavailability in freshwater sediments: Implication for sediment quality criteria. In: 6th Int Symp Tox Assess and On-line Monitoring, Berlin Univ of Technol, May 10–14, p 33.

    Google Scholar 

  • Klapwijk, A., Drent, J, Steenvoorden, JHAM (1974) A modified procedure for the TTC-dehydrogcnase test in activated sludge. Water Res 8: 121–125.

    Article  CAS  Google Scholar 

  • Klein, DA., Loh, TC, Goulding, RL (1971) A rapid procedure to evaluate the deydrogenase activity of soils low in organic matter. Soil Biol Biochem 3: 385–387.

    Article  CAS  Google Scholar 

  • Koopman, B, Bitton, G, Dutton, RJ, Logue, CL (1989) Toxicity testing in wastewater systems: Application of a short-term assay based on induction of the lac opcron in E. coli. Water Sci Technol 20 (11/12): 137–143.

    Google Scholar 

  • Kwan, KK (1993a) Direct toxicity assessment of solid phase samples using the toxi-chromotest kit. Environ Toxicol Water Qual 8: 223–230.

    Article  CAS  Google Scholar 

  • Kwan, KK (1993b) Direct solid phase toxicity testing procedure. Environ Toxicol Water Qual 8: 345–350.

    Article  CAS  Google Scholar 

  • Kwan, KK, Dutka, BJ (1992a) Evaluation of Toxi-Chromotest direct sediment toxicity testing procedure and Microtox solid-phase testing procedure. Bull Environ Contam Toxicol 49: 656–662.

    Article  PubMed  CAS  Google Scholar 

  • Kwan, KK., Dutka, BJ (1992b) A novel bioassay approach: Direct application of the Toxi-Chromotest and SOS Chromotest to sediments. Environ Toxicol Water Qual 7: 49–60.

    Article  CAS  Google Scholar 

  • Landner, L (ed) (1987) Speciation of metals in water, sediment and soil systems. In: Lecture Notes in Earth Sciences, Vol 11. Springer-Verlag, Berlin.

    Google Scholar 

  • Langerman, N, Biltonen, RL (1979) In: Hirs, CHW and Timascheff, SN (eds) Methods in enzymology, Vol 61, Academic Press, New York, pp 287–317.

    Google Scholar 

  • Lee, CW, Koopman, B, Bitton, G (1988) Evaluation of the formazan extraction step of INT-dehydrogenase assay. Tox Assess 3: 41–54.

    Article  CAS  Google Scholar 

  • Lee, KC., Cunningham, BA., Paulsen, GM., Liang, GH, Moore, RB (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36: 4–6.

    Article  CAS  Google Scholar 

  • Lee, S, Suzuki, M, Tamiya, E, Karube, I (1991) Microbial detection of toxic compounds utilizing recombinant DNA technology and bioluminescence. Anal Chim Acta 244: 201–206.

    Article  CAS  Google Scholar 

  • Lenhard, G (1963) Dehydrogenase activity as criterion for determination of toxic effects on biological purification systems. Hydrobiologia 25: 1–8.

    Article  Google Scholar 

  • Lewis, PA., Weber, CI (1985) A study of the reliability of Daphnia acute toxicity tests. In: Cardwell, RD., Purdy, R, Bahner, RC (eds) Aquatic toxicology and hazard assessment, STP 854. Am Soc Test Mat, Philadelphia, PA, pp 73–86.

    Chapter  Google Scholar 

  • Liu, D (1981) A rapid biochemical test for measuring chemical toxicity. Bull Environ Contam Toxicol 26: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D, Dutka, BJ (eds) (1984) Toxicity screening procedures using bacterial systems. Marcel Dekker, New York.

    Google Scholar 

  • Liu, D, Kwasniewska, K (1981) An improved agar plate method for rapid assessment of chemical inhibition to microbial populations. Bull Environ Contam Toxicol 27: 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, R (1965) Factors that affect the tolerance of fish to heavy metal poisoning. In: Tarzwell, CM (ed) Biological problems in water pollution, 3rd Seminar. Publication 999-WP-25. U.S. Dept Health, Educ Welfare, Publ Health Serv, Cincinnati, OH, pp 181–186.

    Google Scholar 

  • Maciorowski, HD, Clarke, R (1980) Advantages and disadvantages of using invertebrates in toxicity testing. In: Builema, AL., Cairns, J (eds) Aquatic invertebrate bioassays, STP 715. Am Soc Test Mat, Philadelphia, PA, pp 36–47.

    Chapter  Google Scholar 

  • Matin, A, Auger, E, Blum, P, Schultz, J (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Ann Rev Microbiol 43: 293–316.

    Article  CAS  Google Scholar 

  • Matthys, W (1975) Enzyme of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interaction with some heavy metals in vitro and in vivo. Physiol Plant 33: 161–165.

    Article  Google Scholar 

  • Mazidji, CN, Koopman, B, Bitton, G (1992) Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environ Toxicol Water Qual 7: 339–354.

    Article  CAS  Google Scholar 

  • McFeters, GA, Bond, PJ, Olson, SB, Tehan, YT (1983) A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res 17: 1757–1762.

    Article  CAS  Google Scholar 

  • Merian, E (1991) Metals and their compounds in the environment: Occurrence, analysis and biological relevance. Weinheim, New York.

    Google Scholar 

  • Miller, TG, Mackay, WC (1980) The effects of hardness, alkalinity and pH of test water on the toxicity of copper to rainbow trout (Salmo gairdneri). Water Res 14: 129–133.

    Article  CAS  Google Scholar 

  • Miller, WE, Peterson, JC, Greene, JC, Callahan, CA (1985) Comparative toxicology of laboratory organisms for assessing hazardous waste sites. J Environ Qual 14: 569–574.

    Article  CAS  Google Scholar 

  • Moody, RP., Weinberger, P., Greenhalgh, R (1983) Algal fluorometric determination of the potential phytoioxicity of environmental pollutants. In: Nriagu, JO (ed) Aquatic toxicology. Wiley, New York, pp 503–512.

    Google Scholar 

  • Mount, DI, Norberg, TJ (1984) A seven-day life style cladoceran toxicity test. Environ Toxicol Chem 3: 425–434.

    Article  CAS  Google Scholar 

  • Munawar, M, Dixon, G, Mayfieid, CI., Reynoldson, T., Sadar, MH (eds) (1989) Environmental bioassay techniques and their application. Kluwer Academic Publishers, Belgium.

    Google Scholar 

  • Munkittrick, KR, Power, EA, Sergy, GA (1991) The relative sensitivity of Microtox Daphnia, rainbow trout, and fathead minnow acute lethality tests. Environ Toxicol Water Qual 6: 35–62.

    Article  CAS  Google Scholar 

  • Neidhardt, FR, van Bogelen, RA, Vaughn, V (1984) The genetics and regulation of heat-shock proteins. Ann Rev Gen 18: 295–329.

    Article  CAS  Google Scholar 

  • Obst, U, Holzapfel-Pschorn, A, Wiegand-Rosinus, M (1988) Application of enzyme assays for toxicological water testing. Tox Assess 3: 81–91.

    Article  CAS  Google Scholar 

  • Paran, JH., Sharma, S, Qureshi, AA (1990) A rapid and simple toxicity assay based on growth rate inhibition of Pseudomonas fluorescens. Tox Assess 5: 351–365.

    Article  CAS  Google Scholar 

  • Peltier, WH., Weber, CI (1985) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. Report EPA-600/4-85/013. USEPA. Cincinnati, OH.

    Google Scholar 

  • Perez-Garcia, A, Codina, JC., Cazoria, FM., de Vicente, A (1993) Rapid respirometric toxicity test: Sensitivity to metals. Bull Environ Contam Toxicol 50: 703–708.

    CAS  Google Scholar 

  • Phipps, GL., Holcombe, GW (1984) A method for aquatic multiple spccics toxicant testing: Acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ Pollut 38: 141–157.

    Google Scholar 

  • Qureshi, AA., Flood, KW., Thompson, SR., Janhurst, CS., Inniss, CS., Rokosh, DA (1982) Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and complex effluents. In: Pearson, JG., Foster, RB, Bishop, WE (eds) Aquatic toxicity and hazard assessment. 5th Conf, STP No. 766. Am Soc Test Mat, Philadelphia. PA, pp 179–195.

    Chapter  Google Scholar 

  • Qureshi, AA., Coleman, RN., Paran, JH (1984) Evaluation and refinement of the Microtox test for use in toxicity screening. In: Liu, D, Dutka, BJ (eds) Toxicity screening procedures using bactcrial systems. Marcel Dckker. New York, pp 1.

    Google Scholar 

  • Ralston, DM, O’Halloran, TV (1990) Ultrasensitive and heavy metal selectivity of the allosterically modulated merR transcription complex. Proc Natl Acad Sci USA 87: 3846–3850.

    Article  PubMed  CAS  Google Scholar 

  • Raspor, B (1991) 1.5 Metal and metal compounds in water. In: Merian, E (ed) Metals and their compounds in the environment: Occurrence, analysis and biological relevance. Weinheim, New York, pp 233–256.

    Google Scholar 

  • Reinhartz, A, Lampert, I, Herzberg, M, Fish, F (1987) A new, short term, sensitive, bacterial assay kit for the detection of toxicants. Tox Assess 2: 193–206.

    Article  CAS  Google Scholar 

  • Rhodes, K (1992) A rapid acute toxicity test based on daphnid feeding behavior. M.S. thesis. Dept Environ Eng Sci, Univ of Florida, Gainesville, FL.

    Google Scholar 

  • Ribo, JM, Kaiser, KLE (1983) Effects of selected chemicals to photolumincscent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12: 1421–1442.

    Article  CAS  Google Scholar 

  • Ribo, JM., Yang, JE., Huang, PM (1989) Luminescent bacteria toxicity assay in the study of mercury speciation. Hydrobiologia 188/189: 155–162.

    Google Scholar 

  • Rodriguez, E., Jones, LP (1994) Expression of heat-stress proteins by heavy-metal resistant Acinetobacter. 94th Gen Meeting, Am Soc Microbiol, Las Vegas, Nevada. May 23–27, 1994. Abstract #Q–109.

    Google Scholar 

  • Rogers, JE, Li, SW (1985) Effect of metals and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bull Environ Contam Toxicol 34: 858–865.

    Article  PubMed  CAS  Google Scholar 

  • Schubauer-Berigan, MK, Dierkes, JR., Monson, PD, Ankley, GT (1993a) pH- dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azereca, and Lumbriculus variegalus. Environ Toxicol Chem 12: 1261–1266.

    Google Scholar 

  • Schubauer-Berigan, MK., Amato, JR., Ankley, GT., Baker, SE., Burkhard, LP., Dierkes, JR., Jenson, JJ, Lukasewycz, MT, Norberg-King, TJ (1993b) The behavior and identification of toxic metals in complex mixtures: Examples from effluent and sediment pore water toxicity identification evaluation. Arch Environ Contam Toxicol 24: 298–306.

    Article  CAS  Google Scholar 

  • Selifonova, O., Burlage, R., Barkay, T (1993) Bioluminescent sensors for the detection of bioavailable Hg (II) in the environment. Appl Environ Microbiol 59: 3083–3090.

    PubMed  CAS  Google Scholar 

  • Sengal, F., Tarkman, A (1989) Chromium treatment of wastewaters by chemical methods. In: Broekaert, JAC, Gucer, S., Adams, F (eds) Metal speciation in the environment, NATO ASI series G, Vol 23, Springer-Verlag, Berlin.

    Google Scholar 

  • Slabbert, JL (1986) Improved bacterial growth test for rapid water toxicity screening. Bull Environ Contam Toxicol 37: 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Sloof, W, Canton, JH., Hermens, JL (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (Sub)acute toxicity tests. Aquat Toxicol 4: 113–128.

    Article  Google Scholar 

  • St-Laurent, D., Blaise, C., MacQuarrie, P., Scroggins, R., Trottier, B (1992) Comparative assessment of herbicide phytotoxicity to Selenastrum capricornutum using microplate and flask bioassay procedures. Environ Toxicol Water Qual 7: 35–48.

    Article  CAS  Google Scholar 

  • Sterritt, RM, Lester, JN (1980) Interaction of heavy metals with bacteria. Sci Total Environ 14: 6–17.

    Google Scholar 

  • Stom, DI, Geel, TA, Balayan, AE., Shachova, GI, Kuznetsov, AM., Medvedeva, SE (1992) Bioluminescent method in studying the complex effect of sewage components. Arch Environ Contam Toxicol 22: 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Stotzky, G (1979) Physicochemical factors that affect the toxicity of heavy metals to microbes in aquatic habitats. In: Colwell, RR., Foster, J, Ahearn, HL (eds) Aquatic Microbial Ecology, Univ of Maryland, College Park, pp 81–125.

    Google Scholar 

  • Sylva, RN (1976) The environmental chemistry of copper (II) in aquatic systems. Water Res 10: 789–792.

    Article  CAS  Google Scholar 

  • Tanizaki, Y, Shimokawa, T, Yamazaki, M (1992) Physico-chemical speciation of trace elements in urban streams by size fractionation. Water Res 26: 55–63.

    Article  CAS  Google Scholar 

  • Tarradellas, J, Rossel, D (1991) Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environ Toxicol Water Qual 6: 17–34.

    Article  Google Scholar 

  • Tescione, L, Belfort, G (1993) Construction and evaluation of a metal ion detector. Biotechnol Bioeng 42: 945–952.

    Article  PubMed  CAS  Google Scholar 

  • Tessier, L, Vaillancourt, G, Pazdernik, L (1994) Temperature effects on cadmium and mercury kinetics in freshwater molluscs under laboratory conditions. Arch Environ Contam Toxicol 26: 179–184.

    Article  CAS  Google Scholar 

  • Trevors, JT (1986) Bacterial growth and activity as indicators of toxicity. In: Bitton, G, Dutka, BJ (eds) Toxicity testing using microorganisms. Vol 1. CRC Press, Boca Raton, FL, pp 9–25.

    Google Scholar 

  • Tucker, RK (1979) Effects of in vivo cadmium exposure on ATPase in gill of the lobster, Homarus amehcanus. Bull Environ Contam Toxicol 23: 33–35.

    Article  PubMed  CAS  Google Scholar 

  • Tung, KK, Scheibner, MG, Walbourn, CC (1991) The solid phase assay: New Microtox test procedure. In: Proc. 17th Ann. Aquatic Toxicity Workshop, Nov 5–7, 1990, Vancouver. BC, Vol. I.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1979) Bibliography of literature pertaining to the genus Selenasirum. USEPA, Corvallis, OR.

    Google Scholar 

  • USEPA (1988) Methods for aquatic toxicity identification evaluation. Phase I toxicity characterization procedures. Report EPA 600/3-88/034. USEPA, Duluth, MN.

    Google Scholar 

  • USEPA (1989a) Methods for aquatic toxicity identification evaluation. Phase II toxicity identification procedures. Report 600/3-88/035. USEPA. Duluth, MN.

    Google Scholar 

  • USEPA (1989b) Methods for aquatic toxicity identification evaluation. Phase III toxicity confirmation procedures. Report 600/3-88/036. USEPA, Duluth, MN.

    Google Scholar 

  • USEPA (1989c) Algal (Selenastrum caprtcornutum) growth test. In: Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms EPA/600/4-89/001. USEPA. Cincinnati, OH. pp 147–174.

    Google Scholar 

  • van Assche, F., Cardinaels, C, Clijsters, H (1988) Induction of enzyme capacity in plants as a results of heavy metal toxicity: Dose-response relations in Phaseolus vulgaris L.. treated with zinc and cadmium. Environ Pollut 52: 103–115.

    Article  PubMed  Google Scholar 

  • van Coillie, R, Couture, P., Visser, SA (1983) In: Nriagu, JO (ed) Aquatic toxicology. Wiley, New York, pp 487–502.

    Google Scholar 

  • van Dyk, TK., Majarian, WR., Konstantinov, KB., Young, RM, Dhurjati, PS, LaRossa, RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60: 1414–1420.

    PubMed  Google Scholar 

  • Vasseur, P, Ferard, JF, Rast, C, Larbaigt, G (1984) Luminiscent marine bacteria in acute toxicity testing. In: Persoone, G., Jaspers, E, Claus, C (eds) Ecotoxicological testing for the marine environment. Vol 2, State Univ of Ghent and Inst of Marine Sci Res, Bredene. Belgium, pp 381–396.

    Google Scholar 

  • Versteeg, DJ., Graney, RL, Gicsy, JP (1988) Field utilization of clinical measures for the assessment of xenobiotic stress in aquatic organisms. In: Adams, WJ, Chapman, GA, Landis, WG (Eds) Aquatic toxicology and hazard assessment, Vol 10, STP 971. Am Soc Test Mat, Philadelphia. PA, pp 289–306.

    Chapter  Google Scholar 

  • Vidakovic, Z, Papes, D, Tomic, M (1993) Toxicity of waste drilling fluids in modified allium test. Water Air Soil Pollut 69: 413–423.

    Article  CAS  Google Scholar 

  • Walsh, GE., Garnas, RL (1983) Determination of chemical fractions of liquid wastes using freshwater and saltwater algae and crustaceans. Environ Sci Technol 17: 180–182.

    Article  CAS  Google Scholar 

  • Wood, JM, Wang, H-K (1983) Microbial resistance to heavy metals. Environ Sci Technol 17: 582A–590A.

    Article  CAS  Google Scholar 

  • Xu, H, Dutka, BJ (1987) ATP-TOX system: A new rapid sensitive bacterial toxicity screening system based on the determination of ATP. Tox Assess 2: 149–166.

    Article  CAS  Google Scholar 

  • Zimmermann, R, Iturriaga, R, Becker-Birck, J (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol 36: 926–935.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kong, IC., Bitton, G., Koopman, B., Jung, KH. (1995). Heavy Metal Toxicity Testing in Environmental Samples. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 142. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4252-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4252-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8709-4

  • Online ISBN: 978-1-4612-4252-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics