Skip to main content

Fluorescence Monitoring of Rapid Cycle PCR for Quantification

  • Chapter
Gene Quantification

Part of the book series: Advanced Biomedical Technologies ((ABT))

Abstract

The polymerase chain reaction (PCR) benefits from rapid temperature cycling (Wittwer et al., 1994). In particular, rapid cycling appears to improve the quantitative PCR of rare transcripts (Tan and Weis, 1992). The glass capillaries used as sample containers for rapid cycling are natural cuvettes for fluorescence analysis. Fluorometric monitoring of PCR has been reported with double-stranded DNA (dsDNA) dyes (Higuchi et al., 1992; Higuchi et al., 1993; Ishiguro et al., 1995; Wittwer et al., 1997a) and sequence-specific probes (Lee et al., 1993; Livak et al., 1995; Wittwer et al., 1997a). We have integrated a fluorimeter with a rapid temperature cycler for fluorescence monitoring during amplification (Wittwer et al., 1997b). Both cycle-by-cycle fluorescence monitoring and continuous (within cycle) monitoring offer unique quantitative information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Higuchi R, Dollinger G, Walsh P, and Griffith R (1992): Simultaneous amplification and detection of specific DNA sequences. Bio/Technology 10: 413–17.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, and Watson R (1993): Kinetic PCR analysis: real time monitoring of DNA amplification reactions. Bio/Technology 11:1026–30.

    Article  PubMed  CAS  Google Scholar 

  • Hillen W, Goodman T, Benight A, Wartell R, and Wells R (1981): High resolution experimental and theoretical thermal denaturation studies on small overlapping restriction fragments containing the Escherichia coli lactose genetic control region. J Biol Chem 256:2761–6.

    PubMed  CAS  Google Scholar 

  • Ishiguro T, Saitoh J, Yawata H, Yamagishi H, Iwasaki S, and Mitoma Y (1995): Homogeneous quantitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of a fluorescent intercalator. Anal Biochem 229:207–13.

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Connell C, and Bloch W (1993): Allelic discrimination by nick translation PCR with fluorogenic probes. Nucl Acids Res 21:3761–6.

    Article  PubMed  CAS  Google Scholar 

  • Livak K, Flood S, Marmaro J, Giusti W, and Deetz K (1995): Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Meth Appl 4:357–62.

    CAS  Google Scholar 

  • Ririe K, Rasmussen R, and Wittwer C (1997): Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem, in press.

    Google Scholar 

  • Tan S and Weis J (1992): Development of a sensitive reverse transcriptase PCR assay, RT-RPCR, utilizing rapid cycle times. PCR Meth Appl 2:137–43.

    CAS  Google Scholar 

  • Wetmur J (1995): Nucleic acid hybrids, formation and structure of. In: Molecular Biology and Biotechnology: A Comprehensive Desk Reference. Meyers R, ed, pp. 605–8, New York: VCH.

    Google Scholar 

  • Wittwer C (1989): Automated polymerase chain reaction in capillary tubes with hot air. Nucl Acids Res 17:4353–7.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer C, Reed G, and Ririe K (1994): Rapid cycle DNA amplification. In: The Polymerase Chain Reaction Mullis K, FerrĂ© F, and Gibbs R, eds., pp. 174–81, Deerfield Beach: Springer-Verlag.

    Chapter  Google Scholar 

  • Wittwer C, Herrmann M, Moss A, and Rasmussen R (1997a): Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques, in press.

    Google Scholar 

  • Wittwer C, Ririe K, Andrew R, David D, Gundry R, and Balis U (1997b): The LightCycler™: A microvolume multisample fluorimeter with rapid temperature control. BioTechniques in press.

    Google Scholar 

  • Young B and Anderson M (1985): Quantitative analysis of solution hybridisation. In: Nucleic Acid Hybridisation: A Practical Approach. Hames B, Higgins S, eds., pp. 47–71, Washington DC: IRL Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Wittwer, C., Ririe, K., Rasmussen, R. (1998). Fluorescence Monitoring of Rapid Cycle PCR for Quantification. In: Ferré, F. (eds) Gene Quantification. Advanced Biomedical Technologies. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4164-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4164-5_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8682-0

  • Online ISBN: 978-1-4612-4164-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics