Skip to main content

Rapid Cycle DNA Amplification

  • Chapter
The Polymerase Chain Reaction

Abstract

DNA amplification requires temperature cycling of the sample. From the viewpoint of the sample, the only relevant characteristics of a temperature cycler are its speed and homogeneity. How fast the sample temperature can be changed largely determines the cycle time. How uniform the sample temperature is affects reproducibility. As cycle speed increases, it becomes harder to maintain homogeneous temperatures within and between samples. Standard commercial instrumentation usually completes 30 cycles (94, 55, 74°C) in about 2–4 hr. A new “high-performance” system requires about half as much time and is reported to run two temperature profiles (60, 94 °C) in a little over an hour (Haff et al., 1991). “Rapid cycle DNA amplification” as used here refers to completion of 30 cycles of amplification in 10–30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boerwinkle E, Xiong W, Fourest E, Chan L (1989): Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: Application to the apolipoprotein B 3′ hypervariable region. Proc Natl Acad Sci USA 86:212–216.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson CE, Alm RA, Trust TJ (1993): Effect of heat denaturation of target DNA on the PCR amplification. Gene 123:241–244.

    Article  PubMed  CAS  Google Scholar 

  • Haff L, Atwood JG, DiCesare J, Katz E, Picozza E, Williams JF, Woudenberg T (1991): A high-performance system for automation of the polymerase chain reaction. BioTechniques 10:102–112.

    PubMed  CAS  Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, Griffith R (1992): Simultaneous amplification and detection of specific DNA sequences. Bio/Technology 10: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, Fockler C, Dollinger G, Watson R (1993): Kinetic PCR analysis: real time monitoring of DNA amplification reactions. Bio/Technology 11:1026–1030.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe BL, Conti-Tronconi BM, Horten RM (1992): Gel-loading dyes compatible with PCR. BioTechniques 12:679–680.

    PubMed  CAS  Google Scholar 

  • Kogan SC, Marie Doherty BS, Gitschier J (1987): An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. N Eng J Med 317:985–990.

    Article  CAS  Google Scholar 

  • Maeda Y, Nunomura K, Ohtsubo E (1990): Differential scanning calorimetric study of the effect of intercalators and other kinds of DNA-binding drugs on the stepwise melting of plasmid DNA. J Mol Biol 215:321–329.

    Article  PubMed  CAS  Google Scholar 

  • Odelberg SJ, White R (1993): A method for accurate amplification of polymorphic CA-repeat sequences. PCR Meth Appl 3:7–12.

    Article  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC (1989): Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1066–1073.

    Article  PubMed  CAS  Google Scholar 

  • Rychlik W, Spencer WJ, Rhoads RE (1990): Optimization of the annealing temperature for DNA amplification in vitro. Nucl Acids Res 18:6409–6412.

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Chang CA (1985): Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow H, Dew-Jager K, Gesteland RF (1993): Rapid cycle sequencing in an air thermal cycler. BioTechniques 15:512–519.

    PubMed  CAS  Google Scholar 

  • Tan ST, Weis JH (1992): Development of a sensitive reverse transcriptase PCR assay, RT-RPCR, utilizing rapid cycle times. PCR Meth Appl 2:137–143.

    Article  CAS  Google Scholar 

  • Wittwer CT, Garling DJ (1991): Rapid cycle DNA amplification: Time and temperature optimization. BioTechniques 10:76–83.

    PubMed  CAS  Google Scholar 

  • Wittwer CT, Fillmore GC, Hillyard DR (1989): Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res 17:4353–4357.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Fillmore GC, Garling DJ (1990): Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Anal Biochem 186:328–331.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Marshall BC, Reed GB, Cherry JL (1993): Rapid cycle allele-specific amplification: studies with the cystic fibrosis delta F508 locus. Clin Chem 39:804–809.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wittwer, C.T., Reed, G.B., Ririe, K.M. (1994). Rapid Cycle DNA Amplification. In: Mullis, K.B., Ferré, F., Gibbs, R.A. (eds) The Polymerase Chain Reaction. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0257-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0257-8_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3750-7

  • Online ISBN: 978-1-4612-0257-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics