Skip to main content

Effects of Pulsed Electromagnetic Fields on Membrane Transport

  • Chapter
Emerging Electromagnetic Medicine

Abstract

The fundamental research into the mechanism of action 2,3,5,11,18,25,31 of electromagnetic field stimulation was initiated and stimulated by the successful clinical treatments of pseudarthrosis, non-union, bone fracture, and nerve and ligament regeneration. Furthermore, treatment with pulsed electromagnetic fields (PEMF) has facilitated the healing of skin ulcers and reduced the pain of hip prostheses while simultaneously stimulating bone growth.26,41 Bone deposition in relation to orthodontic problems has been stimulated when animals were treated with electromagnetic fields.20,45 It has been argued that, due to a reduced release of lysosomal enzymes observed in cultured fibroblasts, PEMF may favorably affect chronic inflammatory processes 34 In specific circumstances PEMF may affect the activity of enzyme systems as observed in murine melanoma cells.27

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamine T, Muramatsu H, Hamada H, Sakou T. Effects of pulsed electromagnetic field on growth and differentiation of embryonal carcinoma cells. J Cell Physiol 1985; 124: 247–254.

    Article  Google Scholar 

  2. Bassett CAL. The development and application of PEMFs for ununited fractures and arthrodesis. Orthop Clin N Am 1984; 15: 61–88.

    Google Scholar 

  3. Bassett CAL. The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodesis. Clin Plast Surg 1985; 12: 259–277.

    Google Scholar 

  4. Bassett CAL, Chokshi HR, Hernandez E, Pawluk RJ, Strop M. The effect of pulsing electromagnetic fields on cellular calcium and calcification of non-unions. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications (Eds. CT Brighton, J Black, SR Pollack ). Grune and Stratton, New York. 1979; 427–441.

    Google Scholar 

  5. Bassett CAL, Pilla AA, Pawluk RJ. A non-operative salvage of surgically resistant pseudarthroses and non-unions by pulsing electromagnetic fields: A preliminary report. Clin Orthop 1977; 124: 128–143.

    Google Scholar 

  6. Bawin SM, Adey WR, Sabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA 1978; 75: 6314–6318.

    Article  Google Scholar 

  7. Blank M. Recent developments in the theory of ion flow across membranes under imposed electric fields. In: Modern Bioelectricity (Ed. AA Marino ). Marcel Dekker, New York. 1988; 345–364.

    Google Scholar 

  8. Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC. Oxidative phosphorylation and photophosphorylation. Ann Rev Biochem 1977; 46: 955–1026.

    Article  Google Scholar 

  9. Cain CD, Adey WR, Luben RA. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. J Bone Miner Res 1987; 2: 437–441.

    Article  Google Scholar 

  10. Cruess RL, Kan K, Bassett CAL. The effects of pulsing electromagnetic fields on bone metabolism in experimental disuse osteoporosis. Clin Orthop 1983; 173: 245–250.

    Google Scholar 

  11. Dal Monte A, Fontanesi G, Cadossi R, Poli G, Giancecchi F. Pulsed electromagnetic field therapy in the treatment of congenital and acquired pseudarthrosis. In: Modern Bioelectricity (Ed. AA Marino ). Marcel Dekker, New York. 1988; 711–756.

    Google Scholar 

  12. De Loecker W, Delport PH, Cheng N. Effects of pulsed electromagnetic fields on rat skin metabolism. Biochim Biophys Acta 1989; 982: 9–14.

    Article  Google Scholar 

  13. Delport PH, Cheng N, Mulier JC, Samen W, De Loecker W. The effects of pulsed electromagnetic fields on metabolism in rat skin. Bioelectrochem Bioenerg 1985; 14: 93–98.

    Article  Google Scholar 

  14. Farndale RW, Maroudas. Low frequency pulsed magnetic fields do not modify several aspects of ion transport in biological materials. Bioelectrochem Bioenerg 1985; 14: 105–114.

    Article  Google Scholar 

  15. Farndale RW, Murray JC. The action of pulsed electromagnetic fields on cyclic AMP levels in cultured fibroblasts. Biochim Biophys Acta 1986; 881: 46–53.

    Google Scholar 

  16. Fisher SJ, Dulling J, Smith SD. Effect of a pulsed electromagnetic field on plasma membrane protein glycosylation. J Bioelectricity 1986; 5: 253–267.

    Google Scholar 

  17. Fitton-Jackson S, Jones DB, Murray JC, Farndale RW. (abstract) The response of connective and skeletal tissues to pulsed magnetic fields. Trans BRAGS 1981; 1: 86.

    Google Scholar 

  18. Frank C, Schachar N, Dittrich D, Shrine N, De Haas W, Edwards G. Electromagnetic stimulation of ligament healing in rabbits. Clin Orthop 1983; 175: 263–272.

    Google Scholar 

  19. Furman RE, Tanaka JC, Mueller P, Barchi RL. Voltage-dependent activation in purified reconstituted sodium channels from rabbit T-tubular membranes. Proc Natl Acad Sci USA 1986; 83: 488–492.

    Article  Google Scholar 

  20. Gerling JA, Sinclair PM, Roa RL. The effect of pulsating electromagnetic fields on condylar growth in guinea pigs. Am J Orthod 1985; 87: 211–223.

    Article  Google Scholar 

  21. Goodman R, Abbott J, Krim A, Henderson AS. Nucleic acid and protein synthesis in cultured chinese hamster ovary (CHO) cells exposed to the pulsed electromagnetic fields. J Bioelectricity 1985; 4: 565–575.

    Google Scholar 

  22. Goodman R, Bassett CAL, Henderson AS. Pulsing electromagnetic fields induce cellular transcription. Science 1983; 220: 1283–1285.

    Article  Google Scholar 

  23. Goodman R, Henderson AS. Stimulation of RNA synthesis in the salivary gland cells of Sciara Coprophila by an electromagnetic signal used for treatment of skeletal problems in horses. J Bioelectricity 1987; 6: 37–47.

    Google Scholar 

  24. Hiraki Y, Endo N, Takigawa M, Asada A, Takahashi H, Suzuki F. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field. Biochim Biophys Acta 1987; 931: 94–100.

    Article  Google Scholar 

  25. Ito H, Bassett CAL. Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat. Clin Orthop 1983; 181: 283–290.

    Google Scholar 

  26. Jeran M, Zaffuto S, Moratti A, Bagnacani M, Cadossi R. PEMF stimulation of skin ulcers of venous origin in humans: Preliminary report of a double blind study. J Bioelectricity 1987; 6: 181–188.

    Google Scholar 

  27. Jones DB, Pedley RB, Ryaby JT. The effects of pulsating electromagnetic fields on differentiation and growth in Cloudman S91 murine melanoma cells in vitro. J Bioelectricity 1986; 5: 145–169.

    Google Scholar 

  28. Korenstein R, Somjen D, Danon A, Fischler H, Binderman I. (abstract) Pulsed capacitive electric induction of cyclic AMP changes, Ca45 uptake and DNA synthesis in bone cells. Trans BRAGS 1981; 1: 34.

    Google Scholar 

  29. Lauger P. Ionic channels with conformational substrates. Biophys J 1985; 47: 581–591.

    Article  Google Scholar 

  30. Luben RA, Cain CD, Chen MCY, Rosen DM, Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: Inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci USA 1982; 79: 4180–4184.

    Article  Google Scholar 

  31. Marcer M, Musatti G, Bassett CAL. Results of pulsed electromagnetic fields (PEMFs) in ununited fractures after external skeletal fixation. Clin Orthop 1984; 190: 260–265.

    Google Scholar 

  32. McLeod BR, Smith SD, Liboff AR. Calcium and potassium cyclotron resonance curves and harmonics in diatoms (A Coffeaeformis). J Bioelectricity 1987; 6: 153–168.

    Google Scholar 

  33. Murray JC, Farndale RW. Modulation of collagen production in cultured fibroblasts by a low-frequency pulsed magnetic field. Biochim Biophys Acta 1985; 838: 98–105.

    Google Scholar 

  34. Murray JC, Lacy M, Fitton-Jackson S. Degradative pathways in cultured synovial fibroblasts: Selective effects of pulsed electromagnetic fields. J Orthop Res 1988; 6: 24–31.

    Article  Google Scholar 

  35. Neumann E, Katchalsky A. Long-lived conformational changes induced by electric impulses in biopolymers. Proc Natl Acad Sci USA 1972; 69: 993–997.

    Article  Google Scholar 

  36. Norton LA. Effects of pulsed electromagnetic fields on a mixed chondroblastic tissue culture. Clin Orthop 1982; 167: 280–290.

    Google Scholar 

  37. Norton LA, Rodan GA, Bourret LA. Epiphyseal cartilage cAMP changes produced by electrical and mechanical perturbations. Clin Orthop 1977; 24: 59–68.

    Google Scholar 

  38. Ottani V, Monti MG, Morocutti M, Ferri M, Stracchi R, Ruggeri A, Barbiroli B. Influence of pulsed electromagnetic fields on regenerating rat liver after partial hepatectomy. J Anat 1984; 139: 253–263.

    Google Scholar 

  39. Oxender DL, Christensen HN. Distinct mediating system for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 1963; 238: 3686–3699.

    Google Scholar 

  40. Riggs TR, McKirahan KJ. Action of insulin on transport of L-alanine into rat diaphragm in vitro. J Biol Chem 1973; 248: 6450–6455.

    Google Scholar 

  41. Rispoli FP, Corolla FM, Mussner R. The use of low frequency pulsing electromagnetic fields in patients with painful hip prostheses. J Bioelectricity 1988; 7: 181–187.

    Google Scholar 

  42. Rodan GA, Bourret LA, Norton LA. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 1978; 199: 690–692.

    Article  Google Scholar 

  43. Sisken BF. Effects of electromagnetic fields on nerve regeneration. In: Modern Bioelectricity (Ed. AA Marino ). Marcel Dekker, New York. 1988; 497–527.

    Google Scholar 

  44. Smith SD. Limb regeneration. In: Modern Bioelectricity (Ed. AA Marino ). Marcel Dekker, New York. 1988; 529–555.

    Google Scholar 

  45. Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1987; 91: 91–104.

    Article  Google Scholar 

  46. Takahashi K, Kanedo I, Date M, Fukada E. Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 1986; 42: 185–186.

    Article  Google Scholar 

  47. Teissie J, Knox BE, Tsong TY, Wehrle J. Synthesis of ATP in respiratory-inhibited submitochondrial particles induced by microsecond electric pulses. Proc Natl Acad Sci USA 1981; 78: 7473–7477.

    Article  Google Scholar 

  48. Teissie J, Tsong TY. Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J Membr Biol 1980; 55: 133–140.

    Article  Google Scholar 

  49. Tsong TY. Electroconformational coupling: How membrane-bound ATPase transduces energy from dynamic electric fields. Ann Rev Physiol 1988; 50: 273–290.

    Article  Google Scholar 

  50. Tsong TY, Astumian RD. Absorption and conversion of electric field energy by membrane-bound ATPases. Bioelectrochem Bioenerg 1986; 15: 457–476.

    Article  Google Scholar 

  51. Tsong TY, Astumian RD. Electroconformational coupling and membrane protein function. Prog Biophys Molec Biol 1987; 50: 1–45.

    Article  Google Scholar 

  52. Westerhoff HV, Tsong TY, Chock PB, Chen YD, Astumian RD. How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci USA 1986; 83: 4734–4738.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

De Loecker, W., Cheng, N., Delport, P.H. (1990). Effects of Pulsed Electromagnetic Fields on Membrane Transport. In: O’Connor, M.E., Bentall, R.H.C., Monahan, J.C. (eds) Emerging Electromagnetic Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3386-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3386-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97224-4

  • Online ISBN: 978-1-4612-3386-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics