Skip to main content

Neurophysiology of the Olfactory Bulb

  • Chapter
Science of Olfaction

Abstract

The olfactory bulb receives neural signals from a sheet of sensory epithelium located in the nasal cavity and transforms this information into output signals that are transmitted to central cortical structures. The olfactory system is thus similar to other sensory systems in that a two-dimensional array of receptors projects upon a two-dimensional cortex. It differs, however, in having no obvious inherent relation between odor characteristics and the receptive surface. One hypothesis for the neural coding of odor quality is that there are a finite number of olfactory receptor subtypes, each responsive to some particular property of odorous molecules. Different odors would generate distinctive patterns of responses across the several receptor types. These hypothetical receptor types might be segregated into separate regions of the epithelium, and this segregation might be conveyed topographically to the olfactory bulb, but there is no necessity of this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamek, G.D., R.C. Gesteland, R.G. Mair, and B. Oakley (1984). Transduction physiology of olfactory receptor cilia. Brain Res., 310, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Adamek, G.D., W.T. Nickell, and M.T. Shipley (1986). Evidence for diffuse and focal projections from the olfactory epithelium to the bulb. Chem. Senses, 11, 575.

    Google Scholar 

  • Adrian, E.D. (1950). The electrical activity of the olfactory bulb. EEG Clin. Neurophysiol, 2, 377–388.

    Article  CAS  Google Scholar 

  • Alheid, G.F., J. Carlsen, J. DeOlmos, and L. Heimer (1984). Quantitative determination of collateral anterior olfactory nucleus projections using a fluorescent tracer with an algebraic solution to the problem of double retrograde labelling. Brain Res., 292, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Allison, A.C., and R.T.T. Warwick (1949). Quantitative observations on the olfactory system of the rabbit. Brain, 72, 186–197.

    Article  PubMed  CAS  Google Scholar 

  • Ambros-Ingerson, J., R. Granger, and G. Lynch (1990). Simulation of paleocortex performs hierarchical clustering. Science, 247, 1344–1347.

    Article  PubMed  CAS  Google Scholar 

  • Andrade, R., R.C. Malenka, and R.A. Nicoll (1986). A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science, 234, 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Astic, L., and D. Saucier (1986). Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Brain Res. Bull., 16, 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.H. (1968). The role of the anterior limb of the anterior commissure in olfaction. Physiol. Behav., 3, 507–515.

    Article  Google Scholar 

  • Bloom, F.E., E. Costa, and G.C. Salmoiraghi (1964). Analysis of individual rabbit olfactory bulb neuron responses to the microelectrophoresis of acetylcholine, norepinephrine and serotonin synergists and antagonists. J. Pharmacol. Exp. Therp., 146, 16–23.

    CAS  Google Scholar 

  • Blue, M.E., K.A. Yagaloff, L.A. Mamounas, P.R. Hartig, and M.E. Molliver (1988). Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res., 453, 315–328.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N.G., A.L. Hudson, and G.W. Price (1987). GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience, 20, 365–383.

    Article  PubMed  CAS  Google Scholar 

  • Boyson, S.J., P. McGonigle, and P.B. Molinoff (1986). Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci., 6, 3177–3188.

    PubMed  CAS  Google Scholar 

  • Brashear, H.R., L. Zaborszky, and L. Heimer (1986). Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience, 17, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Buonoviso, N., and M.A. Chaput (1990). Response similarity to odors in olfactory bulb output cells presumed to be connected to the same glomerulus: Electrophysiological study using simultaneous single-unit recordings. J. Neurophysiol., 63, 447–454.

    Google Scholar 

  • Closse, A., M. Camps, A. Wanner, and J.M. Palacios (1988). In vivo labeling of brain dopamine D2 receptors using the high-affinity specific D2 agonist [3H] CV 205–502. Brain Res., 440, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Costanzo, R.M., and R.J. O’Connell (1980). Receptive fields of second-order neurons in the olfactory bulb of the hamster. J. Gen. Physiol., 76, 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Costanzo, R.M., M.T. Shipley, and S. Van Ooteghem (1984). Ontogeny and lesion induced changes in cytochrome oxidase (CO) levels in the olfactory system. Neurosci. Abstr., 10, 118.

    Google Scholar 

  • Daston, M.M., G.D. Adamek, and R.C. Gesteland (1990). Ultrastructural organization of receptor cell axons in frog olfactory nerve. Brain Res., 537, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Daval, G., and J. Leveteau (1974). Electrophysiological studies of centrifugal and centripetal connections of the anterior olfactory nucleus. Brain Res., 78, 395–410.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B.J., and F. Macrides (1981). The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: An autoradiographic study. J. Comp. Neurol., 203, 475–493.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B.J., and F. Macrides (1983). Tyrosine hydroxylase immunoreactive neurons and fibers in the olfactory system of the hamster. J. Comp. Neurol., 214, 427–440.

    Article  Google Scholar 

  • Dawson, T.M., P. Barone, A. Sidhu, J.K. Wamsley, and T.N. Chase (1988). The D1 dopamine receptor in the rat brain: quantitative autoradiographic localization using an iodinated ligand. Neuroscience,26, 83–100.

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Dauphin, M., E. Tribolet, and J.J. Dreifuss (1981). Relations somatotopiques entre la muquese olfactive et le bulbe olfactif chez le triton. Brain Res., 219, 269–287.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, H.J., W.T. Nickell, M.T. Shipley, and R.C. Gesteland (1990). Organization of projections from olfactory epithelium to olfactory bulb in the frog, Rana pipiens. J. Comp. Neurol., 299, 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S.L., F.E. Bloom, and G. Aston-Jones (1983). Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev., 63, 844–914.

    PubMed  CAS  Google Scholar 

  • ffrench-Mullen, J.M.H., K. Koller, R. Zaczek, J.T. Coyle, N. Hori, and D.O. Carpenter (1985). N-Acetylaspartylglutamate: Possible role as the neurotransmitter of the lateral olfactory tract. Proc. Natl. Acad. Sci. USA, 82, 3897–3900.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1972a). Depth recording of averaged evoked potential of olfactory bulb. J. Neurophysiol., 35, 780–796.

    PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1972b). Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J. Neurophysiol., 35, 762–769.

    PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1972c). Spatial divergence and temporal dispersion in the primary olfactory nerve of cat. J. Neurophysiol., 35, 733–744.

    PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1974a). Attenuation of transmission through glomeruli of olfactory bulb on paired shock stimulation. Brain Res., 65, 77–90.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1974b). Relation of glomerular neuronal activity to glomerular transmission attenuation. Brain Res., 65, 91–107.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, W.J. (1974c). Average transmission distance from mitraltufted cells to granule cells in the olfactory bulb. EEG Clini. Neurophysiol., 36, 609–618.

    Article  CAS  Google Scholar 

  • Freeman, WJ. (1974d). Topographic organization of primary olfactory nerve in cat and rabbit as shown by evoked potentials. EEG Clin. Neurophysiol., 36, 33–45.

    Article  CAS  Google Scholar 

  • Gahwiler, B.H., and D.A. Brown (1985). GABAB- receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA, 82, 1558–1562.

    Article  PubMed  CAS  Google Scholar 

  • Gall, C.M., S.H. Hendry, K.B. Seroogy, E.G. Jones, and J.W. Haycock (1987). Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J. Comp. Neurol., 266, 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Gehlert, D.R. and J.K. Wamsley (1985). Dopamine receptors in the rat brain: A quantitative autoradiographic analysis. J. Neurosci., 8, 2352–2365.

    Google Scholar 

  • Getchell, T.V., and GM. Shepherd (1975a). Synaptic actions on mitral and tufted cells elicited by olfactory nerve volleys in the rabbit. J. Physiol., 251, 497–522.

    PubMed  CAS  Google Scholar 

  • Getchell, T.V., and G.M. Shepherd (1975b). Short-axon cells in the olfactory bulb: dendrodendritic synaptic interactions. J. Physiol., 251, 523–548.

    PubMed  CAS  Google Scholar 

  • Godfrey, D.A., C.D. Ross, A.D. Herrmann, and F.M. Matschinsky (1980). Distribution and derivation of cholinergic elements in the rat olfactory bulb. Neuroscience, 5, 273–292.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales, R.A., and F.T. Crews (1985). Cholinergic- and adrenergic-stimulated inositide hydrolysis in brain: Interaction, regional distribution and coupling mechanisms.J. Neurochemistry. 45, 1076–1084.

    Article  CAS  Google Scholar 

  • Graziadei, P.P.C., and J.F. Metcalf (1971). Autoradiographic and ultrastructural observations on the frog’s olfactory mucosa. Z. Zellforsch. Microsk. Anat., 116, 305–318.

    Article  CAS  Google Scholar 

  • Haberly, L.B. (1985). Neuronal circuitry in olfactory cortex: Anatomy and functional implications. Chem. Senses, 10, 219–238.

    Article  Google Scholar 

  • Haberly, L.B., and J.L. Price (1978). Association and commissural fiber systems of the olfactory cortex of the rat: Systems originating in the piriform cortex and adjacent areas. J. Comp. Neurol., 178, 711–740.

    Article  PubMed  CAS  Google Scholar 

  • Haberly, L.B., and J.M. Bower (1989). Olfactory cortex: model circuit for study of associative memory? TINS, 12, 258–264.

    PubMed  CAS  Google Scholar 

  • Halasz, N., A. Ljungdahl, and T. Hokfelt (1978). Transmitter histochemistry of the rat olfactory bulb. II. Fluorescence histochemical, autoradiographic and electron microscopic localization of monoamines. Brain Res., 154, 253–271.

    Article  PubMed  CAS  Google Scholar 

  • Halasz, N., O. Johansson, T. Hokfelt, A. Ljungdahl, and M. Goldstein (1981). Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioning. J. Neurocytol., 10, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Halasz, N., and G.M. Shepherd (1983). Neurochemistry of the vertebrate olfactory bulb. Neuroscience, 10, 579–619.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, K.A., and J.S. Kauer (1985). Intracellular potentials of salamander mitral/tufted neurons in response to odor stimulation. Brain Res., 338, 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, K.A., and J.S. Kauer (1988). Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander.J. Neurophysiol., 59, 1736–1755.

    PubMed  CAS  Google Scholar 

  • Harrison, T.A., and J.W. Scott (1986). Olfactory bulb responses to odor stimulation: Analysis of response pattern and intensity relationships. J. Neurophysiol., 56, 1571–1589.

    PubMed  CAS  Google Scholar 

  • Holley, A., and K.B. Doving (1977). Receptor sensitivity, acceptor distribution, convergence and neural coding in the olfactory system. In J. LeMagnen and P. MacLeod (Eds.), Olfaction and Taste Vl. Paris. London: IRL, pp. 113–133.

    Google Scholar 

  • Hori, N., C.R. Auker, D.J. Braitman, and D.O. Carpenter (1982). Pharmacologic sensitivity of amino acid responses and synaptic activation in in vitro prepiriform neurons. J. Neurophysiol., 48, 1289–1301.

    PubMed  CAS  Google Scholar 

  • Innis, R.B., and G.K. Aghajanian (1987). Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res., 411, 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, I., and A. Hamberger (1986). Effects of kynurenic acid on evoked extracellular field potentials in the rat olfactory bulb in vivo. Brain Res., 386, 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, L, S. Butcher, and A. Hamberger (1986). An analysis of the effects of excitatory amino acid receptor antagonists on evoked field potentials in the olfactory bulb. Neuroscience, 19, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Jahr, C.E., and R.A. Nicoll (1981). Primary afferent depolarization in the in vitro frog olfactory bulb. J. Physiol., 318, 375–384.

    PubMed  CAS  Google Scholar 

  • Jahr, C.E., and R.A. Nicoll (1982a). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol., 326, 213–234.

    PubMed  CAS  Google Scholar 

  • Jahr, C.E., and R.A. Nicoll (1982b). Noradrenergic modulation of dendrodendritic inhibition of the olfactory bulb. Nature (Lond.), 287, 227–228.

    Article  Google Scholar 

  • Jourdan, F., A. Duveau, L. Astic, and A. Holley (1980). Spatial distribution of [14C] 2-deoxyglucose uptake in the olfactory bulbs of rats stimulated with two different odours. Brain Res., 188, 139–154.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.S. (1974). Response patterns of amphibian olfactory bulb neurones to odour stimulation. J. Physiol., 243, 695–715.

    PubMed  CAS  Google Scholar 

  • Kauer, J.S. (1981). Olfactory receptor staining using horseradish peroxidase. Anat. Rec, 200, 331–336.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.S. (1987). Coding in the olfactory system: In T.E. Finger and W.L. Silver (Eds.), Neurobiology of Taste and Smell. New York: Wiley, pp. 205–231.

    Google Scholar 

  • Kauer, J.S., and D.G. Moulton (1974). Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J. Physiol., 243, 717–737.

    PubMed  CAS  Google Scholar 

  • Kerr, D.I.B., and K.E. Hagbarth (1955). An investigation of the olfactory centrifugal system. J. Neurophysiol, 18, 362–374.

    PubMed  CAS  Google Scholar 

  • Kishi, K., K. Mori, and H. Ojima (1984). Distribution of local axon collaterals of mitrals, displaced mitrals, and tufted cells in the rabbit olfactory bulb. J. Comp. Neurol, 225, 511–526.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka, T., Y. Hataguchi, K. Hama, I. Nagatsu, and J.-Y. Wu (1985). Coexistence of immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence of gamma-aminobutyric acid (GABA) and dopamine. Brain Res., 343, 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Kosakofsky, B.E., and M.E. Molliver (1987). The serotonergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse, 1, 153–168.

    Article  Google Scholar 

  • Lacey, M.G., N.B. Mercuri, and R.A. North (1988). On the potassium conduct- ance increase activated by GABAB and dopamine D2 receptors in rat subsantia nigra neurones. J. Physiol, 401, 437–453.

    PubMed  CAS  Google Scholar 

  • Lancet, D., C.A. Greer, J.S. Kauer, and G.M. Shepherd (1982). Mapping of odorrelated neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. Proc. Natl Acad. Sci. USA, 79, 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Land, L.J. (1973). Localized projection of olfactory nerves to rabbit olfactory bulb. Brain Res., 63, 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Land, L.J., and G.M. Shepherd (1974). Autoradiographic analysis of olfactory receptor projections in the rabbit. Brain Res., 70, 506–510.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark, W.E. (1951). The projection of the olfactory epithelium on the olfactory bulb in the rabbit. J. Neurol. Neurosurg. Psychiatry, 14, 1–10.

    Article  Google Scholar 

  • Le Gros Clark, W.E. (1956). Inquiries into the anatomical basis of olfactory discrimination. Proc. R. Soc. of London Series B, 146, 299–319.

    Article  Google Scholar 

  • Leveteau, J., and P. MacLeod (1966). Olfactory discrimination in the rabbit olfactory glomerulus. Science, 153, 175–176.

    Article  PubMed  CAS  Google Scholar 

  • Leveteau, J., and P. MacLeod (1969). Reciprocal inhibition at glomerular level during bilateral olfactory stimulation. In C. Pfaffman (Ed.), Olfaction and Taste, III. New York: Rockefeller University Press, pp. 212–215.

    Google Scholar 

  • Luskin, M.B. and J.L. Price (1983). The topographic organization of associational fibers of the olfactory system of the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol., 216, 264–291.

    Article  PubMed  CAS  Google Scholar 

  • Mackay-Sim, A., P. Shaman, and D.G. Moulton (1982). Topographic coding of odor quality; odorant-specific patterns of epithelial responsivity in the salamander. J. Neurophysiol, 48, 584–596.

    PubMed  CAS  Google Scholar 

  • Mackay-Sim, A., and M.H. Nathan (1984). The projection from the olfactory epithelium to the olfactory bulb in the salamander, Ambystoma tigrinum. Anat. Embryol, 170, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., and S.L. Chorover (1972). Olfactory bulb units: Activity correlated with inhalation cycles and odor quality. Science, 175, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., B.J. Davis, W.M. Youngs, N.S. Nadi, and F.L. Margolis (1981). Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: A neuroanatomical, biochemical and histochemical investigation. J. Comp. Neurol., 203: 495–514.

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., and S.P. Schneider (1982). Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamster. J. Comp. Neurol., 208, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., and B.J. Davis (1983). The olfactory bulb. In P.C. Emson (Ed.), Chemical Neuroanatomy. New York: Raven Press, pp. 391–426.

    Google Scholar 

  • Macrides, F., T.A. Schoenfeld, J.E. Marchand, and A.N. Clancy (1985). Evidence for morphologically, neurochemically and functionally heterogeneous classes of mitral and tufted cells in the olfactory bulb. Chem. Senses, 10, 175–202.

    Article  Google Scholar 

  • Mair, R.G., R.C. Gesteland, and D.L. Blank (1982). Changes in morphology and physiology of olfactory receptor cilia during development. Neuroscience, 7, 3091–3103.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, A., J.H. Meador-Woodruff, J.R. Bunzow, O. Civelli, H. Akil, and S.J. Watson (1990). Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: An in situ hybridization-receptor and autoradiographic analysis.J. Neurosci., 10, 2587–2600.

    CAS  Google Scholar 

  • Martinez, D.P., and W.J. Freeman (1984). Periglomerular cell action on mitral cells in olfactory bulb shown by current source density analysis. Brain Res., 308, 223–233.

    Article  PubMed  CAS  Google Scholar 

  • McLean, J.H., and M.T. Shipley (1987). Serotonergic afferents to the rat olfactory bulb. I. Origins and laminar specificity of serotonergic inputs in adult rat. J. Neurosci., 7, 3016–3028.

    PubMed  CAS  Google Scholar 

  • McLean, J.H., and M.T. Shipley (1988). Postmitotic, postmigrational expression of tyrosine hydroxylase in olfactory bulb dopaminergic neurons. J. Neurosci., 8, 3658–3669.

    PubMed  CAS  Google Scholar 

  • McLean, J.H., M.T. Shipley, W.T. Nickell, G. Aston-Jones, and C.K.H. Reyher (1989). Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol., 285, 339–349.

    Article  PubMed  CAS  Google Scholar 

  • McLennan, H. (1971). The pharmacology of inhibition of mitral cells in the olfactory bulb. Brain Res., 29, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, M. (1986). Patterned response to odor in mammalian olfactory bulb: the influence of intensity. J. Neurophysiol., 56, 572–597.

    PubMed  CAS  Google Scholar 

  • Mori, K. and S.F. Takagi (1975). Spike generation in the mitral cell dendrite of the rabbit olfactory bulb. Brain Res., 100, 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., S. Kogure, and S.F. Takagi (1977). Alternating responses of olfactory bulb neurons to repetitive lateral olfactory tract stimulation. Brain Res., 133, 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., and S.F. Takagi (1978a). An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. J. Physiol. (Lond.), 279, 569–588.

    CAS  Google Scholar 

  • Mori, K., and S.F. Takagi (1978b). Activation and inhibition of olfactory bulb neurones by anterior commissure volleys in the rabbit. J. Physiol. (Lond.), 279, 589–604.

    CAS  Google Scholar 

  • Mori, K., M. Satou, and S.F. Takagi (1979). Axonal projection of anterior olfactory nuclear neurons to the olfactory bulb bilaterally. Exp. Neurol., 64, 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., M.C. Nowycky, and G.M. Shepherd (1981a). Analysis of a long-duration inhibitory potential in mitral cells in the isolated turtle olfactory bulb. J. Physiol. (Lond.), 314, 311–320.

    CAS  Google Scholar 

  • Mori, K., M.C. Nowycky, and G.M. Shepherd (1981b). Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J. Physiol. (Lond.), 314, 281–294.

    CAS  Google Scholar 

  • Mori, K., and K. Kishi (1982). The morphology and physiology of the granule cells in the rabbit olfactory bulb revealed by intracellular recording and HRP injection. Brain Res., 247, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., M.C. Nowycky, and G.M. Shepherd (1982). Impulse activity in presynaptic dendrites: analysis of mitral cells in the isolated turtle olfactory bulb. J. Neurosci., 2, 497–502.

    PubMed  CAS  Google Scholar 

  • Mori, K., K. Kishi, and H. Ojima (1983). Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J. Comp. Neurol, 219, 339–355.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., M.C. Nowycky, and G.M. Shepherd (1984). Synaptic excitatory and inhibitory interactions at distal dendritic sites on mitral cells in the isolated turtle olfactory bulb.J. Neurosci., 4, 2291–2296.

    PubMed  CAS  Google Scholar 

  • Moulton, D.G. (1974). Dynamics of cell populations in the olfactory epithelium. Ann. NY Acad. Sci., 237, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Moulton, D.G. (1976). Spatial patterning of response to odors in the peripheral olfactory system. Physiol. Rev., 56, 578–593.

    PubMed  CAS  Google Scholar 

  • Mouradian, L.E., and J.W. Scott (1988). Cytochrome oxidase marks dendritic zones of the rat olfactory bulb external plexiform layer. J. Comp. Neurol., 271, 507–518.

    Article  PubMed  CAS  Google Scholar 

  • Moyano, H.F., and J.C. Molina (1980). Axonal projections and conduction properties of olfactory peduncle neurons in the rat. Exp. Brain Res., 39, 241–248.

    PubMed  CAS  Google Scholar 

  • Mozell, M.M. (1964). Evidence for sorption as a mechanism of the olfactory analysis of vapors. Nature, 203, 1181–1182.

    Article  PubMed  CAS  Google Scholar 

  • Mozell, M.M. (1966). The spatiotemporal analysis of odor at the level of the olfactory receptor sheet. J. Gen. Physiol., 50, 25–41.

    Article  PubMed  CAS  Google Scholar 

  • Mozell, M.M. (1970). Evidence for a chromatographic model of olfaction.J. Gen. Physiol., 56, 46–63.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., W.H. Oertel, and F.F. Wouterlood (1984). Immunocytochemical localization of GABA neurons and dopamine neurons in the rat main and accessory olfactory bulbs. Neurosci. Lett., 47, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, M., K. Mori, and S.F. Takagi (1978). Centrifugal influence on olfactory bulb activity in the rabbit. Brain Res., 154, 301–316.

    Article  PubMed  CAS  Google Scholar 

  • Nickell, W.T., and M.T. Shipley (1988a). Two anatomically specific classes of candidate cholinoceptive neurons in the rat olfactory bulb. J. Neurosci., 8, 4482–4491.

    PubMed  CAS  Google Scholar 

  • Nickell, W.T., and M.T. Shipley (1988b). Neurophysiology of magnocellular forebrain inputs to the olfactory bulb in the rat: Frequency potentiation of field potentials and inhibition of output neurons. J. Neurosci., 8, 4492–4502.

    PubMed  CAS  Google Scholar 

  • Nickell, W.T., and M.T. Shipley (1988c). Pharmacology of inhibition in the glomerular layer of the olfactory bulb. Chem. Senses, 13, 724.

    Google Scholar 

  • Nickell, W.T., A.B. Norman, L.M. Wyatt, and M.T. Shipley (1990). Localization of dopamine receptor subtypes in the olfactory bulb: [3H]Spiperone (D2) binding in the glomerular and nerve layers. Neurosci. Abstr., 16, 101.

    Google Scholar 

  • Nickell, W.T., A.B. Norman, L.M. Wyatt, and M.T. Shipley (1991). Olfactory bulb DA receptors may be located on terminals of the olfactory nerve. Neuroreport, 2, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R.A. (1970). Recurrent excitatory pathways of anterior commissure and mitral cell axons in the olfactory bulb. Brain Res., 19, 491–493.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R.A. (1971). Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb. Brain Res., 35, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R.A. (1972a). Olfactory nerves and their excitatory action in the olfactory bulb. Exp. Brain Res., 14, 185–197.

    CAS  Google Scholar 

  • Nicoll, R.A. (1972b). The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J. Physiol. (Lond.), 223, 803–814.

    CAS  Google Scholar 

  • Nicoll, R.A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain. Science, 241, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R.A., and B.E. Alger (1979). Presynaptic inhibition: Transmitter and ionic mechanisms. Int. Rev. Neurobiol., 21, 217–258.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C., K. Mori, and G.M. Shepherd (1981). Blockade of synaptic inhibition reveals long-lasting synaptic excitation in turtle olfactory bulb. J. Neurophysiol., 46, 649–658.

    PubMed  CAS  Google Scholar 

  • Nowycky, M.C., N. Halasz, and G.M. Shepherd (1983). Evoked field potential analysis of dopaminergic mechanisms in the isolated turtle olfactory bulb. Neuroscience, 8, 717–722.

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn, E., G. Battaglia, E.B. De Souza, M.J. Kuhar, and M.E. Molliver (1988). Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence. J. Neurosci., 8, 2788–2803.

    PubMed  Google Scholar 

  • Ojima, H., K. Mori, and K. Kishi (1984). The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection. J. Comp. Neurol, 230, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Orona, E., J.W. Scott, and E.C. Rainer (1983). Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb.J. Comp. Neurol., 217, 221–231.

    Article  Google Scholar 

  • Orona, E., E.C. Rainer, and J.W. Scott (1984). Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J. Comp. Neurol., 226, 346–356.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, C.G., T.P.S. Powell, and G.M. Shepherd (1963). Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J. Physiol. (Lond.), 168, 65–88.

    CAS  Google Scholar 

  • Pinching, A.J. (1970). Synaptic connexions in the glomerular layer of the olfactory bulb. J. Physiol. (Lond.), 210, 14P–15P.

    CAS  Google Scholar 

  • Pinching, A.J. (1971). Myelinated dendritic segments in the monkey olfactory bulb. Brain Res., 29, 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Pinching, A.J., and T.P.S. Powell (1971a). The neuropil of the glomeruli of the olfactory bulb. J. Cell. Sci., 9, 347–377.

    PubMed  CAS  Google Scholar 

  • Pinching, A.J., and T.P.S. Powell (1971b). The neuropil of the periglomerular region of the olfactory bulb. J. Cell. Sci., 9, 379–409.

    PubMed  CAS  Google Scholar 

  • Pinnock, R.D. (1984). Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res., 322, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Potapov, A.A. (1985). Baclofen inhibition of synaptic transmission in frog olfactory bulb glomeruli. Nierofiziologiia, 17, 834–837.

    CAS  Google Scholar 

  • Potapov, A.A., and V.V. Trepakov (1986). Two types of GABA-receptors in the intact olfactory bulb and primordial hippocamp of frogs: pharmacological data. Biull-Eksp-Biol-Med., 101, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Price, J.L., and T.P.S. Powell (1970). The synaptology of granule cells of the olfactory bulb. J. Cell. Sci., 7, 125–155.

    PubMed  CAS  Google Scholar 

  • Rall, W. (1972). Dendritic neuron theory and dendrodendritic synapses in a simple cortical system. In F.O. Schmitt (Ed.), The Neurosciences: Second Study Program. New York: Rockefeller University Press, pp. 552–565.

    Google Scholar 

  • Rall, W., G.M. Shepherd, T.S. Reese, and M.W. Brightman (1966). Dendrodendritic synaptic pathway for synaptic interactions in the olfactory bulb. Exp. Neurol., 14, 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., and G.M. Shepherd (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol., 31, 884–915.

    PubMed  CAS  Google Scholar 

  • Reyher, C.K.H., J. Lubke, W.J. Larsen, G.M. Hendrix, M.T. Shipley, and H.G. Baumgarten (1991). Olfactory bulb granule cell aggregates: Morphological evidence for interperikaryal electrotonic coupling via gap junctions.J. Neurosci., 11, 1485–1495.

    PubMed  CAS  Google Scholar 

  • Ribak, C.E., J.E. Vaughn, K. Saito, R. Barber, and E. Roberts (1977). Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res., 126, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Royet, J.P., G. Sicard, C. Souchier, and F. Jourdan (1987). Specificity of spatial patterns of glomerular activation in the mouse olfactory bulb: computer-assisted image analysis of 2-deoxyglucose autoradiograms. Brain Res., 417, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rye, D.B., B.H. Wainer, M.-M. Mesulam, E.J. Mufson, and C.B. Saper (1984). Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience, 13, 627–643.

    Article  PubMed  CAS  Google Scholar 

  • Salmoiraghi, G.C., F.E. Bloom, and E. Costa (1964). Adrenergic mechanisms in the rabbit olfactory bulb. Am. J. Physiol, 207, 1417–1424.

    PubMed  CAS  Google Scholar 

  • Saucier, D., and L. Astic (1986). Analysis of the topographic organization of olfactory epithelium projections in the rat. Brain Res. Bull., 16, 455–462.

    CAS  Google Scholar 

  • Scalia, F. (1976). Structure of olfactory and accessory olfactory systems. In R. Llinas and W. Precht (Eds.), Frog Neurobiology. Berlin: Springer-Verlag, pp. 213–233.

    Google Scholar 

  • Schild, D. (1988). Principles of odor coding and a neural network for odor discrimination. Biophysiol. J., 54, 1001–1011.

    Article  CAS  Google Scholar 

  • Schneider, S.P., and F. Macrides (1978). Laminar distribution of interneurons in the main olfactory bulb of the adult hamster. Brain Res. Bull., 3, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S.P., and J.W. Scott (1983). Orthodromic response properties of rat olfactory bulb mitral and tufted cells correlate with their projection patterns. J. Neurophysiol., 50, 358–378.

    PubMed  CAS  Google Scholar 

  • Schoenfeld, T.A., and F. Macrides (1984). Topographic organization of connections between the main olfactory bulb and pars externa of the anterior olfactory nucleus in the hamster. J. Comp. Neurol., 227, 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld, T.A., J.E. Marchand, and F. Macrides (1985). Topographic organization of tufted cell axonal projections in the hamster main olfactory bulb: An intrabulbar associational system.J. Comp. Neurol., 235, 503–518.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W. (1981). Electrophysiological identification of mitral and tufted cells and distributions of their axons in olfactory system of rat. J. Neurophysiol., 46, 918–931.

    PubMed  CAS  Google Scholar 

  • Scott, J.W. and D.D. Aaron (1977). Averaged induced waves in the olfactory bulb of the rat during odor stimulation. Exp. Neurol., 55, 654–665.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., and W.B. Stewart (1979). Mechanisms of augmented field potential responses in the rat olfactory bulb. Brain Res., 163, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., R.L. McBride, and S. P. Schneider (1980). The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J. Comp. Neurol, 194, 519–534.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., E.C. Ranier, J.L. Pemberton, E. Orona, and L.E. Mouradian (1985). Pattern of rat olfactory bulb mitral and tufted cell connections to the anterior olfactory nucleus pars externa. J. Comp. Neurol., 242, 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., and T.A. Harrison (1987). The olfactory bulb: Anatomy and physiology. In T.E. Finger and W.L. Silver (Eds.), Neurobiology of Taste and Smell. New York: Wiley, pp. 151–178.

    Google Scholar 

  • Sharp, F.R., J.S. Kauer, and G.M. Shepherd (1975). Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res., 98, 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G.M. (1963a). Responses of mitral cells to olfactory nerve volleys in the rabbit. J. Physiol. (Lond.), 168, 89–100.

    CAS  Google Scholar 

  • Shepherd, G.M. (1963b). Neuronal systems controlling mitral cell excitability. J. Physiol. (Lond.), 168, 101–117.

    CAS  Google Scholar 

  • Shepherd, G.M. (1972a). Synaptic organization of the mammalian olfactory bulb. Physiol. Rev., 52, 864–917.

    PubMed  CAS  Google Scholar 

  • Shepherd, G.M. (1972b). The olfactory bulb as a simple cortical system: Experimental analysis and functional implications. In F.O. Schmitt (Ed.), The Neurosciences: Second Study Program. New York: Rockefeller University Press, pp. 539–552.

    Google Scholar 

  • Shepherd, G.M. (1979). Olfactory bulb. In G.M. Shepherd, The Synaptic Organization of the Brain, 2nd ed. New York: Oxford University Press, pp. 152–183.

    Google Scholar 

  • Shepherd, G.M., and R.K. Brayton (1979). Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res., 175, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G.M., and C.A. Greer (1990). Olfactory bulb. In G.M. Shepherd (Ed.), The Synaptic Organization of the Brain. 3rd ed. New York: Oxford University Press, pp. 133–169.

    Google Scholar 

  • Shipley, M.T., and R. Costanzo (1984). Olfactory bulb cytochrome oxidase (CO) staining patterns suggest that glomeruli are functional units. Neurosci. Abstr., 10, 118.

    Google Scholar 

  • Shipley, M.T., and D.S. Zahm (1990). Differential synaptic processing on apical versus lateral mitral/tufted cell dendrites. Chem. Senses, 15, 638.

    Google Scholar 

  • Slotnick, B.M., G. Graham, D.G. Laing, and G.A. Bell (1987). Detection of proprionic acid vapor by rats with lesions of olfactory bulb areas associated with high 2-DG uptake. Brain Res., 417, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.B. (1985). Labelling of olfactory bulb glomeruli following horseradish peroxidase lavage of the nasal cavity. Brain Res., 347, 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.B., and J.W. Scott (1976). Anesthetic-dependent field potential interactions in the olfactory bulb. Brain Res., 103, 487–499.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.B., J.S. Kauer, and G.M. Shepherd (1979). Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol., 185, 715–734.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.B., and P.E. Pedersen (1987). The spatial organization of olfactory nerve projections. Brain Res., 411, 248–258.

    Article  PubMed  CAS  Google Scholar 

  • Stone, E.A., and A.S. Herrera (1986). Alpha-adrenergic modulation of cyclic AMP formation in rat CNS: Highest level in olfactory bulb. Brain Res., 384, 401–403.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, S. (1989). Human Olfaction. Tokyo: University of Tokyo Press.

    Google Scholar 

  • von Baumgarten, R., J.D. Green, and M. Mancia (1962). Slow waves in the olfactory bulb and their relation to unitary discharges. EEG. Clin. Neurophysiol., 14, 621–634.

    Article  Google Scholar 

  • Walsh, R.R. (1959). Olfactory bulb potentials evoked by electrical stimulation of the contralateral bulb. Am. J. Physiol, 196, 327–329.

    PubMed  CAS  Google Scholar 

  • Weinberg, C, and E. Meisami (1989). Comparison of staining patterns of rat olfactory bulb glomeruli by cytochrome oxidase and acid phosphatase. Chem. Senses, 14, 759.

    Google Scholar 

  • Wellis, D. P., and J.W. Scott (1989). Olfactory receptor axons run in parallel on the lateral face of the rat olfactory bulb. Chem. Senses, 14, 759.

    Google Scholar 

  • Wellis, D. P., J.W. Scott, and T.A. Harrison (1989). Discrimination among odorants by single neurons of the rat olfactory bulb. J. Neurophysiol., 61, 1161–1177.

    PubMed  CAS  Google Scholar 

  • Wellis, D.P., and J.W. Scott (1990). Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. J. Neurophysiol., 64, 932–947.

    PubMed  CAS  Google Scholar 

  • Westecker, M.E. (1970). Alternating characteristics of the evoked potential in the olfactory bulb in response to repetitive stimulation of the lateral olfactory tract. Brain Res., 17, 142–144.

    Article  PubMed  CAS  Google Scholar 

  • Whittemore, E.R., and J.F. Koerner (1989). An explanation for the purported excitation of piriform cortical neurons by N-acetyl-L-aspartyl-L-glutamic acid (NAAG). Proc. Natl. Acad. Sci. USA, 86, 9602–9605.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C, T. Yamamoto, and K. Iwama (1963). The inhibitory systems in the olfactory bulb studied by intracellular recording. J. Neurophysiol., 26, 403–415.

    PubMed  CAS  Google Scholar 

  • Zaborszky, L., J. Carlsen, H.R. Brashear, and L. Heimer (1986). Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol., 243, 488–509.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Nickell, W.T., Shipley, M.T. (1992). Neurophysiology of the Olfactory Bulb. In: Serby, M.J., Chobor, K.L. (eds) Science of Olfaction. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2836-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2836-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7690-6

  • Online ISBN: 978-1-4612-2836-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics