Skip to main content

Application of Biochemical Genetics to Deer Management: What the Gels Tell

  • Conference paper
The Biology of Deer

Abstract

Since the first electrophoretic study of deer was reported in Nature in 1961, there have been over 100 papers published on the subject. Most of the early studies fall into two categories: (1) those surveying a few individuals from several species, generally utilizing blood samples from zoo animals, and (2) those examining many individuals from one or a few species, often using tissue samples obtained from carcasses during hunting seasons. The interspecific studies have identified several species-specific markers in proteins from serum and red blood cells. The cumulative results of the major intraspecific studies have revealed great differences in the amount of variation between species. White-tailed deer (Odocoileus virginianus) and reindeer (Rangifer tarandus) are the most polymorphic species, while European fallow deer (Dama dama) and Père David’s deer (Elaphurus davidianus) show the least variation. Where polymorphism has been found, usually it has indicated significant spatial and temporal differentiation; the gene frequency data verify that deer species are seldom panmictic. Using the standard measures of electrophoretic variation (average heterozygosity, percentage of polymorphic loci, and average number of alleles per locus), significant differences between populations within a species have also been widely reported. Most electrophoretic studies of deer have assumed that polymorphic loci are neutral in relation to natural selection; however, when there has been an attempt to test for selection, several parameters of fitness have been associated with variation at electrophoretic loci in white-tailed deer, red deer (Cervus elaphus), and reindeer. The intensification of deer management in the past decade has brought new genetic problems as well as the application of advanced biomedical techniques in addressing them. Plasma proteins, isozymes, and mitochondrial DNA have provided markers that document hybridization both in captive breeding programs and deer in the wild. Laboratories now conduct routine deer blood-typing. As deer genomes diverge, and some species receive increased protection while others are bred for commercial purposes, biochemical and molecular techniques are bound to have a growing role in deer management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf FW, Utter FM (1979) Population genetics. In Hoar WS, Randall DJ, Brett JR (eds) Fish Physiology, 8. Academic Press, New York, pp 407 – 454

    Google Scholar 

  • Asher GW, Adam JL, Otway W, Bowmar P, van Reenan G, Mackintosh CG, Dratch P (1988) Hybridization of Pere David’s deer (Elaphurus davidianus) and red deer (Cervus elaphus) by artificial insemination. J Zool London 215: 197 – 203

    Article  Google Scholar 

  • Baccus R, Ryman N, Smith MH, Reuterwall C, Cameron D (1983) Genetic variability and differentiation of large grazing mammals. J Mammal 64: 109 – 20

    Article  Google Scholar 

  • Baccus R, Hillstead H, Johns P, Manlove M, Marchin- ton RL, Smith MH (1977) Prenatal selection in white-tail deer. Proc Annu Conf SE Assoc Fish, Wildl Agen 31: 173 – 179

    Google Scholar 

  • Bergmann F Von (1976) Contributions to the study of infrastructures of red deer. Part II First investigations of the elucidation of genetic structure of red deer populations employing protein Z. Jud- gwiss 22: 28–35 (in German)

    Google Scholar 

  • Braend M (1964a) Polymorphism in the serum proteins of reindeer. Nature 203:764 Braend M (1964b) Genetic studies on serum transferrins in reindeer. Hereditas 52: 181 – 188

    Article  Google Scholar 

  • Braend M (1962) Studies on blood and serum groups in the elk (Alces alces). Ann N Y Acad Sci 97: 296 – 305

    Article  PubMed  CAS  Google Scholar 

  • Breshears DD, Smith MH, Cothran EG, Johns PE (1988) Genetic variability in white-tailed deer. Heredity 60: 139 – 146

    Article  PubMed  Google Scholar 

  • Bryant LD, Maser C (1982) Classification and distribution. In Thomas JW, Toweill DE (eds) The Elk of North America: Ecology and Management. Stack- pole Books, Harrisburg, P., pp 1 – 60

    Google Scholar 

  • Bunch TD, Meadows RW, Foote WC, Egbert LN, Spillett J J (1976) Identification of ungulate hemoglobins for law enforcement. J Wildlife Management 40: 517 – 22

    Article  CAS  Google Scholar 

  • Butcher PD, Hawkey CM (1977) A comparative study of haemoglobins from the Artiodactyla by isoelectric focusing. Comp Bioch Physiol 56B: 335 – 339

    Google Scholar 

  • Cameron DG, Yyse ER (1979) Comparative genetics of elk and other cervidae of the Yellowstone Park region. In Boyce MS, Hay den-Wing LD (eds) North American Elk: Ecology, Behavior and Management. University of Wyoming Press, Laramie, pp 34 – 37

    Google Scholar 

  • Cameron DG, Vyse ER (1978) Heterozygosity in Yellowstone Park elk, Cervus canadensis. Biochem Gen 16: 651 – 657

    Article  CAS  Google Scholar 

  • Carr SM, Ballinger SW, Derr JN, Blankenship LH, Bickham JW (1986) Mitochondrial DNA analysis of hybridization between sympatric white-tailed deer and mule deer in West Texas. Proc Natl Acad Sci, USA 83: 9576 – 9580

    CAS  Google Scholar 

  • Chesser RK, Smith MH (1987) Relationship of genetic variation to growth and reproduction in white- tailed deer. In Wemmer CM (ed) Biology and Management of the Cervidae. Smithsonian Institution Press, Washington, D.C., pp 168 – 177

    Google Scholar 

  • Chesser RK, Smith MH, Johns PE, Manlove, MN, Straney DO, Baccus, R (1982a) Spatial, temporal and age-dependent heterozygosity of β–hemoglobin in white-tailed deer. J Wildlife Management 46: 983 – 490

    Article  Google Scholar 

  • Chesser RK, Reuterwall C, Ryman N (1982b) Genetic differentiation of Scandinavian moose Alces alces populations over short geographical distances. Oikos 39: 125 – 130

    Article  Google Scholar 

  • Cothran EG, Chesser RK, Smith MH, Johns PE (1983) Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution 37: 282 – 291

    Article  Google Scholar 

  • Cowan IMcT, Johnston PA (1962) Blood serum protein variations at the species and subspecies level in deer of the genus Odocoileus. Systematic Zool 11: 131 – 138

    Article  Google Scholar 

  • Cowan IMcT, Johnston PA (1962) Blood serum protein variations at the species and subspecies level in deer of the genus Odocoileus. Systematic Zool 11: 131 – 138

    Article  Google Scholar 

  • Cowan IMcT, Johnston PA (1962) Blood serum protein variations at the species and subspecies level in deer of the genus Odocoileus. Systematic Zool 11: 131 – 138

    Article  Google Scholar 

  • Cowan IMcT, Johnston PA (1962) Blood serum protein variations at the species and subspecies level in deer of the genus Odocoileus. Systematic Zool 11: 131 – 138

    Article  Google Scholar 

  • Cowan IMcT, Johnston PA (1962) Blood serum protein variations at the species and subspecies level in deer of the genus Odocoileus. Systematic Zool 11: 131 – 138

    Article  Google Scholar 

  • Cronin MA, Vyse ER, Cameron DG (1988) Genetic relationships between mule deer and white-tailed deer in Montana. J Wildlife Management 52: 320 – 328

    Article  Google Scholar 

  • Dilworth TG, McKenzie J A (1970) Attempts to identify meat from game animals by starch gel electrophoresis. J Wildlife Management 34: 917 – 921

    Article  Google Scholar 

  • Dratch PA (1987a) A marker for red deer-wapiti hybrids. Proc N Z Soc Anim Prod 46: 179 – 182

    Google Scholar 

  • Dratch PA (1987b) Deer blood-typing: applications and developments. Proc of a Deer Course of Veterinarians 4: 28 – 32

    Google Scholar 

  • Dratch PA (1987c) The Fiordland wapiti: their history in their genes. Deer Farmer 40: 35 – 37

    Google Scholar 

  • Dratch PA, Gyllensten U (1985) Genetic differentiation of red deer and North American elk (wapiti). In Fennessy PF, Drew KR (eds) The Biology of Deer Production. R Soc N Z Wellington Bull 22: 37 – 40

    Google Scholar 

  • Feldhamer GA, Morgan RP, McKeown PE, Chapman J A (1982) Lack of polymorphism in liver and muscle enzymes from sika deer (Cervus nippon). J Mammal 63: 512 – 514

    Article  Google Scholar 

  • Gahne B, Rendel J (1961) Blood and serum groups in reindeer compared with those in cattle. Nature 192: 529 – 530

    Article  PubMed  CAS  Google Scholar 

  • Gavin TA, May B (1988) Taxonomic status and genetic purity of Columbian white-tailed deer. J Wildlife Management 52: 1 – 10

    Article  Google Scholar 

  • Gunther A, Scheil H-G (1982) Serologische Unter- suchungen beim Europaischen und beim Mesopota- mishen Damhirsch. 56 Hauptversammlung der Deutschen Gesellschaft fur Saugetierkunde, Salzburg

    Google Scholar 

  • Gyllensten U, Ryman N, Reuterwall C, Dratch P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51: 561 – 580

    Article  Google Scholar 

  • Gyllensten U, Ryman N, Reuterwall C (1982) Allo- zyme differentiation within and between subspecies of red deer and the management of red deer genetic resources in Sweden. Naturvardsverkert Rapport snv pm 1525 (in Swedish)

    Google Scholar 

  • Gyllensten U, Reuterwall C, Ryman N, Stahl G (1980) Geographical variation of transferrin allele frequencies in three deer species from Scandinavia Hereditas 92: 237 – 241

    CAS  Google Scholar 

  • Harrington R (1979) The hybridization of red deer (Cervus elaphus L.) and Japanese sika deer (C. nippon nippon Temminck, 1838 ). Proc 14th Intl Congress Game Biologists, Irish Wildl Pubs, pp 559 – 571

    Google Scholar 

  • Harrington R (1985) Evolution and distribution of the Cervidae. In Fennessy PF, Drew KR (eds) The Biology of Deer Production. R Soc N Z Wellington Bull 22: 3 – 11

    Google Scholar 

  • Harris MJ, Huisman THJ, Hayes FA (1973) Geographic distribution of hemoglobin variants in the white-tailed deer. J Mammal 54: 270 – 274

    Article  PubMed  CAS  Google Scholar 

  • Hartl GB (1986) Genetische Variability beim Rotwild-Answirkungen anthropogener Einfliisse auf den Genpool von Wildtierpopulation. CIC- Rotwildtagung, Graz, pp 423 – 431

    Google Scholar 

  • Hartl GB, Reimoser F (1988) Biochemical variation in rue deer (Capreolus capreolus): are r-strategists among deer genetically less variable than K- strategists? Heredity 60: 221 – 227

    Article  PubMed  Google Scholar 

  • Hartl GB, Willing R, Lang G, Klein F, Koller J (1990) Genetic variability and differentiation in red deer (Cervus elaphus L) of central Europe. Genet Sel Evol 22: 289 – 306

    Article  Google Scholar 

  • Hartl GB, Schleger A, Slowak M (1986) Genetic variability in fallow deer. Dama dama L. Anim Gen 17: 335 – 341

    Article  CAS  Google Scholar 

  • Herzog S (1989) Genetic polymorphism of transferrin in fallow deer, Cervus dama L. Anim Genetics 20: 421 – 426

    Article  CAS  Google Scholar 

  • Herzog S (1988) Polymorphism and genetic control of erythrocyte 6-phosphogluconate dehydrogenase in the genus. Anim Genetics 19: 291 – 294

    Article  CAS  Google Scholar 

  • Herzog S (1986) Biochemisch-genetische Unter- schungen and Rotwild ( Cervus elaphus L.) CIC- Rotwildtagung, Graz pp 432 – 433

    Google Scholar 

  • Hindmarsh M, Schuster NM (1979) Forensic techniques for the identification of venison and other meats to establish the species of origin. Department of Agriculture, Victoria. Australia Agric Note Series 15, Symp on Deer Farming in Victoria, pp 259 – 263

    Google Scholar 

  • Hoyem T, Thorson B (1970) Myoglobin electro- phoretic patterns in identification of meat from different animal species. J Agric Food Chem 18: 737 – 739

    Article  PubMed  CAS  Google Scholar 

  • Huisman THJ (1974) Structural aspects of fetal and adult hemoglobins from nonanemic ruminants. Ann N Y Acad Sci 241: 392 – 410

    Article  PubMed  CAS  Google Scholar 

  • Huisman THJ, Dozy AM, Blunt MH (1968) The hemoglobin heterogeneity of the Virginia white- tailed deer: a possible genetic explanation. Arch Biochem Biophys 127: 711 – 717

    Article  PubMed  CAS  Google Scholar 

  • Johns PE, Baccus R, Manlove M, Pinder J, Smith MH (1977) Reproductive patterns, productivity and genetic variability in adjacent white-tailed deer populations. Proc Annu Conf SE Assa Fish, Wildl Agen 31: 167 – 172

    Google Scholar 

  • Johnson ML (1968) Application of blood protein electrophoretic studies to problems of mammalian taxonomy: Syst Zool 17: 23 – 30

    PubMed  CAS  Google Scholar 

  • Karlin A A, Heidt GA, Sugg DW (1989) Genetic variation and heterozygosity in white-tailed deer in Arkansas. Am Mid Nat 121: 273 – 284

    Article  Google Scholar 

  • Kennedy PK, Kennedy ML, Beck ML (1987) Genetic variability in white-tailed deer (Odocoileus virgi- nianus) and its relationship to environmental parameters and herd origin. Genetica 74: 189 – 201

    Article  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164: 788 – 798

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Kitchen H, Putnam FW, Taylow WJ (1967) Hemoglobin polymorphism in white-tailed deer: subunit basis. Blood 29: 867 – 877

    PubMed  CAS  Google Scholar 

  • Kitchen H, Putnam FW, Taylor WJ (1966) The structural basis for the polymorphic hemoglobins of white-tailed deer associated with sickled and nonsickled erythrocytes. Int Symp Comp Hemoglobin Structure, Thessaloniki, 11-13 April 1986, pp 73 – 82

    Google Scholar 

  • Kitchen H, Putnam FW, Taylor WJ (1964) Hemoglobin polymorphism: its relation to sickling of erythrocytes in white-tailed deer. Science 144: 1237 – 1239

    Article  PubMed  CAS  Google Scholar 

  • Kravchenko DN, Kravchenko RS (1971) Polymorphous systems of blood serum proteins in Cervus elaphus L. Cytology and Genetics 4: 311–315 (in Russian)

    Google Scholar 

  • Kravchenko RS, Galkin VS, Kravchenko DN (1971) Polymorphic proteins in the blood plasma of spotted deer. Collected Scientific Work of the Laboratory of Deer Keeping, 3rd ed. Gorno-Altaisk, p 131

    Google Scholar 

  • Lawton ME, Sutton JG (1982) Species identification of deer blood by isoelectric focusing. J Forensic Sci 22: 361 – 366

    Article  CAS  Google Scholar 

  • Lawton ME, Sutton JG (1981) Species identification of deer blood by isoelectric focusing. Deer 5: 285 – 288

    Google Scholar 

  • Leberg PL, Smith MH (1990) The association between heterozygosity and growth of deer fetuses is not explained by effects of the loci examined. Evolution 44: 454 – 458

    Article  Google Scholar 

  • LeResche RE, Seal US, Karns PD, Franzmann AW (1974) A review of blood chemistry of moose and other Cervidae with emphasis on nutritional assessment. Naturaliste Canadien 101: 263 – 290

    Google Scholar 

  • Lever C (1985) Naturalized Mammals of the World. Longman, New York

    Google Scholar 

  • Lima-de-Faria A, Arnason U, Widegren B, Isaksson M, Essen-Moller J, Jaworska H (1986) DNA cloning and hybridization in deer species supporting the chromosome field theory. Biosystems 19: 185 – 212

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A, Arnason U, Widegren B, Essen- Moller J, Isaksson M, Olsson E, Jaworska O (1984) Conservation of repetitive DNA sequences in deer species studied by Southern blot transfer. J Molec Evol 20: 17 – 24

    Article  PubMed  CAS  Google Scholar 

  • Lowe VPW, Gardiner AS (1974) A re-examination of the subspecies of red deer (Cervus elaphus) with particular regard to stocks in Britain. J Zool London 174: 185 – 201

    Article  Google Scholar 

  • Lowe VPW, McDougall EI (1961) Serum B-globulin types in red deer and other species and their stability in the presence of bacteria. Nature 192: 983 – 984

    Article  PubMed  CAS  Google Scholar 

  • Maffei MD, Woolf A (1987) The influence of genie heterozygosity on the potential productivity of white-tailed deer. Trans III Acad Sci 80: 309 – 316

    Google Scholar 

  • Manlove MN, Smith MH, Hillestad HO, Fuller SE, Johns PE, Straney DO (1976) Genetic subdivision in a herd of white-tailed deer as demonstrated by spatial shifts in gene frequencies. Proc 30th Annu Conf SE Game Fish Comm 30: 487 – 492

    Google Scholar 

  • Manlove MN, Avise JC, Hillestad HO, Ramsey PR, Smith MH, Straney DO (1975) Starch gel electrophoresis for the study of population genetics in white-tailed deer. Proc 29th Annu Conf SE Game Fish Comm 29: 392 – 403

    Google Scholar 

  • Mardini A (1984) Species identification of tissues of selected mammals by agarose gel electrophoresis. Wildl Soc Bull 12: 149 – 251

    Google Scholar 

  • Maughan E (1969) Further studies on the haemoglobin types in deer. Deer 1: 314

    Google Scholar 

  • Maughan E, Williams JRB (1967) Haemoglobin types in deer. Nature 215: 404 – 450

    Article  PubMed  CAS  Google Scholar 

  • McClymont RA, Fenton M, Thompson JR (1982) Identification of cervid tissues and hybridization by serum albumin. J Wildlife Management 46: 540 – 544

    Article  CAS  Google Scholar 

  • McCormick RJ, Moore TD, Field RA, Hepworth WG (1988) Identification of deer meat in cooked products. Wildl Soc Bull 16: 433 – 436

    Google Scholar 

  • McDougall EI, Lowe VPW (1968) Transferrin polymorphism and serum proteins of some British deer. J Zool London 155:131–140

    Article  Google Scholar 

  • McDougall EI, Stewart JC (1976) The whey proteins of the milk red deer (Cervus elaphus L.) A homologue of bovine B-lactoglobulin. Biochemical J 153:647–55

    CAS  Google Scholar 

  • Miller W, Haugen AO, Roslien DJ (1965) Natural variation in the blood proteins of white-tailed deer. J Wildlife Management 29:717–723

    Article  Google Scholar 

  • Miyamoto MM, Kraus F, Ryder OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial sequences. Proc Natl Acad Sci USA 87: 6127 – 6131

    Article  PubMed  CAS  Google Scholar 

  • Munday BL, Corbould A, Goodsall G (1974) Identification of muscle tissue from mammals. J Wildlife Management 38: 884 – 886

    Article  Google Scholar 

  • Murie OJ (1951) Hybridization. In Poole AL (ed) Preliminary Reports of The New Zealand-American Fiordland Expedition. N Z Dept Sci Ind Res Bull 103:26

    Google Scholar 

  • Murphy BR, Smith LM, Lee DJ, Terre DR (1988) Forensic discrimination of exotic and native ungulates. Wildl Soc Bull 16: 24 – 27

    Google Scholar 

  • Nadler CF, Hughes GE, Harris KE, Nadler N W (1967) Electrophoresis of the serum protein of transferrins of Alces alces (elk), Rangifer tarandus (reindeer), and Ovis dalli (Dall sheep) from North America. Comp Biochem Physiol 23: 149 – 157

    Article  PubMed  CAS  Google Scholar 

  • Naik SN, Bhatia HM, Baxi AJ, Naik PV (1964) Haematological study of Indian spotted deer (Axis deer). J Expt Zool 155: 231 – 236

    Article  CAS  Google Scholar 

  • Nevo E, Beiles A, Ben-Schlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates, In Mann GS (ed) Evolutionary Dynamics of Genetic Diversity. Springer-Verlag, Berlin, pp 13 – 21

    Google Scholar 

  • Oates DW, Dent NL, Pearson K (1979a) Differentiation of white-tailed and muie deer tissue by isoelectric focusing. Wildl Soc Bull 7: 113 – 116

    Google Scholar 

  • Oates DW, Pearson K, Dent N (1979b) Differentiation of white-tailed and mule deer blood and tissue by isoelectric-focusing. Nebraska Game and Parks Commission, Lincoln, Nebraska

    Google Scholar 

  • Pemberton JM (1988) Genetics of deer. Publ Vet Deer Assoc 3: 3 – 20

    Google Scholar 

  • Pemberton JM (1983) Blood grouping of deer and its potential in deer management. Some Research on Deer and Its Potential in Deer Management, Symp Br Deer Soc and the Nature Conservancy Council, London, pp 31 – 34

    Google Scholar 

  • Pemberton JM, Smith RH (1985) Lack of biochemical polymorphism in British fallow deer. Heredity 55: 199 – 207

    Article  PubMed  Google Scholar 

  • Pemberton JM, Albon SD, Guinness FE, Clutton−Brock TH (1991) Countervailing selection in different fitness components in female red deer. Evolution 45: 93 – 103

    Article  Google Scholar 

  • Pemberton JM, Albon SD, Guinness FE, Clutton−Brock TH, Berry RJ (1988) Genetic variation and juvenile survival in red deer. Evolution 42: 921 – 934

    Article  Google Scholar 

  • Pex JO, Wolfe JR (1985) Phenotyping phosphoglucose isomerase in the West coast cervids for species identification and individualization. J Forensic Sci 30: 114 – 118

    CAS  Google Scholar 

  • Price PK, Cartwright M, Rogers MJ (1979) Genie variation in white-tailed deer from Arkansas. Proc Arkansas Acad Sci 33: 64 – 66

    Google Scholar 

  • Quinteros IR, Miller WJ (1969) New transferrin phenotypes of white-tailed deer. Analecta Veterinaria 1: 93–98 (in Spanish)

    Google Scholar 

  • Quinteros IR, Muller AO, Miller WJ, Bischoff JR (1971) Transferrin phenotypes of Argentine deer. (Ozotoceros bezoarticus Celer) Analecta Veterinaria 3:107–114 (in Spanish)

    Google Scholar 

  • Ramsey PR, A vise JC, Smith MH, Urbston DF (1979) Biochemical variationand genetic heterogeneity in South Carolina deer populations. J Wildlife Management 43:136–142

    Article  Google Scholar 

  • Randi F, Appollonio M (1988) Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication. Heredity 61:405–410

    Article  PubMed  Google Scholar 

  • Røed KH (1987) Transferrin variation and body size in reindeer. Rangifer tarandus L. Hereditas 106:67–71

    Article  PubMed  Google Scholar 

  • Røed KH (1986) Genetic variability in Norwegian wild reindeer. (Rangifer tarandus L.) Hereditas 104:293–298

    PubMed  Google Scholar 

  • Røed KH (1985a) Genetic variability in Norwegian semi-domestic reindeer. (Rangifer tarandus L.) Hereditas 102:177–184

    Google Scholar 

  • Røed KH (1985b) Genetic differences at the transferrin locus in Norwegian semi-domestic and wild reindeer. (Rangifer tarandus L.) Hereditas 102:199–206

    Google Scholar 

  • Røed KH (1985c) Comparison of the genetic variation in Svalbard and Norwegian reindeer. Can J Zool 63:2038–2042

    Article  Google Scholar 

  • Røed KH (1983) Enzyme polymorphism in one wild and two semi-domestic reindeer (Rangifer tarandus L.) herds of southern Norway. Acta Zoologica Fennica 175:81–83

    Google Scholar 

  • Røed KH, Whitten KR (1986) Transferrin variation and evolution of Alaskan reindeer and caribou. Rangifer tarandus L. Rangiger (Special Issue 1 ):247–251

    Google Scholar 

  • Røed KH, Mossing T, Nieminen M, Rydberg A (1987) Transferrin variation and genetic structure of reindeer populations in Scandinavia. Rangiger 7: 12 – 21

    Google Scholar 

  • Røed KH, Staaland H, Broughton E, Thomas DC (1986) Transferrin variation in caribou (Rangifer tarandus L.) on the Canadian Arctic islands. Can J Zool 64: 94 – 98

    Article  Google Scholar 

  • Røed KH, Soldal AV, Thorisson S (1985) Transferrin variability and founder effect in Iceland reindeer. Rangifer tarandus L. Hereditas 103: 161 – 164

    Article  PubMed  Google Scholar 

  • Ryder OA, Brisban PC, Bowling AT, Wedemeyer EA (1981) Monitoring genetic variation in endangered species. In Scudder GGE, Reveal JL (eds) Evolution Today. Proc 2nd Intl Congr of Systematics and Evol Biol, Carnegie-Mellon Univ, Pittsburgh, pp 417 – 424

    Google Scholar 

  • Ryman N, Baccus R, Reuterwall C, Smith MH (1981) Effective population size and loss of genetic variability in moose and white-tailed deer under different hunting regimes. Oikos 36: 257 – 266

    Article  Google Scholar 

  • Ryman N, Reuterwall C, Nygren K, Nygren T (1980) Genetic variation and differentiation in Scandinavian moose (Alces alces): Are large mammals monomorphic? Evolution 34: 1037 – 1049

    Article  Google Scholar 

  • Ryman N, Beckman G, Brun-Petersen G, Reuterwall C (1977) Variability of red cell enzymes and genetic implications of management policies in Scandinavian moose. (Alces alces). Hereditas 85: 157 – 162

    Article  Google Scholar 

  • Scherton H, Arnason U, Lima-de-Faria A (1987) The chromosome field theory tested in muntjac species by cloning and hybridization. Hereditas 107: 175 – 184

    Article  Google Scholar 

  • Scribner KT, Smith MH (1991) Genetic variability and antler development. In Bubenik Ga, Bubenik AB (eds) Horns, Pronghorns and Antlers. Evolution, Morphology and Social Significance of Cranial Appendages in Ruminants. Springer-Verlag, NY, pp 460 – 473

    Google Scholar 

  • Scribner KT, Warren RJ (1984) Electrophoretic identification of white-tailed and mule deer feces: a preliminary assessment. J Wildlife Management 48: 656 – 865

    Article  Google Scholar 

  • Scribner KT, Smith MH, Johns PE (1989) Environmental and genetic components of growth in white- tailed deer. J Mammal 70: 284 – 291

    Article  Google Scholar 

  • Scribner KT, Wooten MC, Smith MH, Johns PE (1985) Demographic and genetic characteristics of white-tailed deer populations subjected to different harvest methods. In Beasom SL, Robertson SF (eds) Proc Symp on Game Harvest Management. Caesar Kleberg, Wildlife Research Institute, Kingsville, Texas, pp 197 – 212

    Google Scholar 

  • Scribner KT, Smith MH, Johns PE (1984) Age, condition and genetic effects of the incidence of spiked bucks. Proc Annu Conf SE Game Fish Commun 38: 23 – 32

    Google Scholar 

  • Seal US, Erickson AW (1969) Hematology, blood chemistry and protein polymorphisms in the white- tailed deer (Odocoileus virginianus). Comp Biochem Physiol 30: 695 – 713

    Article  PubMed  CAS  Google Scholar 

  • Selander RK, Kaufman DW (1973) Genie variability and strategies of adaptation in animals. Proc Natl Acad Sci USA 70: 1875 – 1877

    Article  PubMed  CAS  Google Scholar 

  • Sheffield SR, Morgan RP, Feldhamer GA, Harman DH (1985) Genetic variation in white-tailed deer (Odocoileus virginianus) populations in Western Maryland. J Mammal 66: 243 – 255

    Article  Google Scholar 

  • Shubin PN (1969) Genetics of transferrin of reindeer and European elk. Genetika 5:37 (in Russian) Translations in Soviet Genetics 5: 26 – 29

    Google Scholar 

  • Shubin PN, Turubanov MN (1976) Transferrin polymorphism in northern deer. Doklady Akademii Nauk SSSR 193:697–699 (in Russian) Translations in Soviet Genetics 12: 448 – 450

    Google Scholar 

  • Shubin PN, Turubanov MN (1976) Transferrin polymorphism in northern deer. Doklady Akademii Nauk SSSR 193:697–699 (in Russian) Translations in Soviet Genetics 12: 448 – 450

    Google Scholar 

  • Shubin PN, Turubanov MN (1976) Transferrin polymorphism in northern deer. Doklady Akademii Nauk SSSR 193:697–699 (in Russian) Translations in Soviet Genetics 12: 448 – 450

    Google Scholar 

  • Smith MH, Scribner KT, Carpenter LH, Garrott RA (1990) Genetic characteristics of Colorado mule deer (Odocoileus hemionus) and comparisons with other cervids. Southwest Natural 35: 1 – 8

    Article  Google Scholar 

  • Smith MH, Branan WV, Marchinton RL, Johns PE, Wooten MC (1986) Genetic and morphologic comparisons of red brocket, brown brocket and white- tailed deer. J Mammal 67: 103 – 111

    Article  Google Scholar 

  • Smith MH, Baccus R, Hillestad HO, Manlove MN (1984) Population genetics. In Halls LK (ed) White- Tailed Deer: Ecology and Management. Stackpole Books, Harrisburg, PA, pp 119–128

    Google Scholar 

  • Smith MH, Chesser RK, Cothran EG, Johns PE (1983) Genetic variability and antler growth in a natural population of white-tailed deer. In Brown RD (ed) Antler Development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville, Texas, pp 365–387

    Google Scholar 

  • Smith MH, Hillestad HO, Manlove MN, Marchinton RL (1976) Use of population genetics data for the management of fish and wildlife populations. In Sabol K (ed) Transactions 41st N Am Wildl Nat Res Conf, Washington D.C., pp 119 – 123

    Google Scholar 

  • Soldal AV, Staaland H (1980) Genetic variation in Norwegian reindeer. In Reimers E, Gaare E, Skjen- neberg S (eds) Proc 2nd Int Reindeer/Caribou Symp, Røros, Norway, 1979, Direktoratet for vilt og ferskvannfisk, Trondheim, pp 396 – 402

    Google Scholar 

  • Storset A, Olaisen B, Wika M, Argmov BJ (1978) Genetic markers in the Spitzbergen reindeer. Hereditas 88: 113 – 115

    Article  PubMed  CAS  Google Scholar 

  • Stratil A, Glasnák V, Bobák P, Čížová D, Gábrišová E, Kaláb P (1990) Variation of some serum proteins of red deer, Cervus elaphus L. Anim Genetics 21: 285 – 293

    CAS  Google Scholar 

  • Stubblefield SS, Warren RJ, Murphy BR (1986) Hybridization of free-ranging white-tailed and mule deer in Texas. J Wildlife Management 50: 688 – 690

    Article  Google Scholar 

  • Tate ML, Dratch PA (1988) Inherited protein variation and parentage testing in farmed red deer. Proc NZ J Anim Prod 48: 181 – 185

    Google Scholar 

  • Taylor WJ, Easley CW (1977) Multiple hemoglobin a- chains in the sika deer (Cervus nippon). Biochem Biophys Acta 492: 126 – 135

    PubMed  CAS  Google Scholar 

  • Thommasen HV, Thomson MJ, Shutler GG, Kirby LT (1989) Development of DNA fingerprints in wildlife forensic science. Wildl Soc Bull 17: 321 – 326

    Google Scholar 

  • Turubanov MN, Shubin PN (1971) New alleles of the transferrin locus in reindeer. Genetika 7:171–173 (in Russian) Translations in Soviet Genetics 7: 265 – 266

    Google Scholar 

  • Van de Weghe A, Van Zeveren A, Bouquet Y (1982) The vitamin D binding protein in domestic animals. Comp Biochem Physiol 73: 977 – 982

    Article  Google Scholar 

  • Van Tets P, Cowan IMcT (1966) Some sources of variation in the blood sera of deer (Odocoileus) as revealed by starch gel electrophoresis. Can J Zool 44: 631 – 647

    Article  PubMed  Google Scholar 

  • Van Wieren (1989) Genetische variatie in het Veluwse edelhert Cervus elaphus. Lutra 32: 193 – 200

    Google Scholar 

  • Wallmo OC (1981) Mule deer and black-tailed deer distribution and habitats. In Wallmo OC (ed) Mule Deer and Black-Tailed Deer of North America. Stackpole Books, Harrisburg, P.a., pp l–25

    Google Scholar 

  • Wegge P (1978) Blood serum electrophoresis of insular and mainland red deer in Norway. Second Int Theriological Congr, Brno, abstract Weisberger AS (1964) The sickling phenomenon and heterogeneity of deer hemoglobin. Proc Soc Expt Biol Med 117: 276 – 280

    Google Scholar 

  • Whitehead GK (1972) Deer of the World. Constable, London

    Google Scholar 

  • Wilhelmson M, Juneja RK, Bengtsson S (1978) Lack of polymorphism in certain blood proteins of European and Canadian moose (Alces alces). Natural- iste Canadien 105: 445 – 449

    CAS  Google Scholar 

  • Woodruff DS, Ryder OA (1986) Genetic characterization and conservation of endangered species: Arabian oryx and Pere David’s Deer. Isozyme Bull 19: 33

    Google Scholar 

  • Wooten MC, Smith MH (1985) Large mammals are genetically less variable? Evolution 39: 210 – 212

    Article  Google Scholar 

  • Wright S (1978) Variability with and among natural populations. Evolution and the Genetics of Populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  • Zhurkevich NM, Fomicheva II (1976) Genetic polymorphisms of transferrings of blood serum in reindeer (Rangifer tarandus L.) indigenous to north eastern Siberia. Genetika 12: 56 – 65

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Dratch, P.A., Pemberton, J.M. (1992). Application of Biochemical Genetics to Deer Management: What the Gels Tell. In: Brown, R.D. (eds) The Biology of Deer. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2782-3_87

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2782-3_87

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7667-8

  • Online ISBN: 978-1-4612-2782-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics