Skip to main content

Water and Electrolyte Metabolism in the Fetal-Placental Unit

  • Chapter
Principles of Perinatal—Neonatal Metabolism

Abstract

The first edition of this book emphasized the fact that the water and electrolyte balances of the fetus were primarily dependent on the water and electrolyte balances of the mother.1 Thus, when the mother was given fluid intravenously, the treatment would affect the fetus. In addition to being a passive recipient of fluid and electrolyte, however, the fetus did develop some measure of control over fluid and electrolyte loss from its body, predominantly by regulation of fetal renal function. In general, new findings relevant to the possible role of the fetal kidney in the genesis of abnormalities of fetal fluid balance are discussed. In addition, some very recent findings of this investigator, relevant to very early kidney development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wintour EM. Water metabolism in the fetal-placental unit. In: Cowett RM, ed. Principles of perinatal-neonatal metabolism. New York: Springer-Verlag, 1991: 340–355

    Chapter  Google Scholar 

  2. Vesely DL. Atrial natriuretic hormones originating from the N-terminus of the atrial natriuretic factor prohormone. Clin Exp Pharmacol Physiol 1995; 22: 108–114.

    Article  PubMed  CAS  Google Scholar 

  3. Mukoyama M, Nakao K, Hosoda K. Brain natriuretic pep¬tide as a novel cardiac hormone in humans. J Clin Invest 1991; 87: 1402–1412.

    Article  PubMed  CAS  Google Scholar 

  4. Itoh H, Sagawa N, Hasegawa M, et al. Brain natriuretic peptide is present in the human amniotic fluid and is secreted from amnion cells. J Clin Endocrinol Metab 1993; 76: 907–911.

    Article  PubMed  CAS  Google Scholar 

  5. Sudoh T, Kanagawa K, Minamino N, et al. C-type natriuretic peptide in porcine brain. Nature 1988; 332: 78–81.

    Article  PubMed  CAS  Google Scholar 

  6. Saito Y, Nakao K, Itoh H, et al. Brain natriuretic peptide is a novel cardiac hormone. Biochem Biophys Res Commun 1989; 158: 360–368.

    Article  PubMed  CAS  Google Scholar 

  7. Dean AD, Vehaskari VM, Greenwald JE. Synthesis and localization of C-type natriuretic peptide in mammalian kidney. Am J Physiol 1994; 266: F491–F496.

    PubMed  CAS  Google Scholar 

  8. Drewett JG, Garbers DL. The family of guanylyl cyclase receptors and their ligands. Endocr Rev 1994; 15: 135–162.

    PubMed  CAS  Google Scholar 

  9. Maack T, Suzuki M, Almeida FA, et al. Physiological role of silent receptors of atrial natriuretic factor. Science 1987; 238; 675–678.

    Article  PubMed  CAS  Google Scholar 

  10. Nakao K, Ogawa Y, Suga S, et al. Molecular biology and biochemistry of the natriuretic peptide system. II: natriuretic peptide receptors. J Hypertens 1992; 10: 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  11. Jamison RL, Canaan-Kuhl S, Pratt R. The natriuretic peptides and their receptors. Am J Kidney Dis 1992; 20: 519–530.

    PubMed  CAS  Google Scholar 

  12. Brown J, Corr L. Renal mechanisms of human a-atrial natriuretic peptide in man. J Physiol 1987; 387: 31–46.

    PubMed  CAS  Google Scholar 

  13. Harris PJ, Skinner SL, Zhuo J. The effects of atrial natriuretic peptide and glucagon on proximal glomerulotubular balance in anaesthetized rats. J Physiol 1988; 402: 29–42.

    PubMed  CAS  Google Scholar 

  14. Burnett JC, Granger JP, Opgenorth TJ. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 1984; 247: F863–F866.

    PubMed  CAS  Google Scholar 

  15. Burnett JC, Opgenorth TJ, Granger JP. The renal action of atrial natriuretic peptide during control of glomerular filtration. Kidney Int 1986; 30: 16–19.

    Article  PubMed  CAS  Google Scholar 

  16. Yates NA, McDougall JG, Coghlan JP, et al. Renal effects of atrial natriuretic factor (99–126) in conscious sodium replete sheep. Clin Exp Pharmacol Physiol 1988; 15: 551–562.

    Article  PubMed  CAS  Google Scholar 

  17. Weidmann P, Hellmueller B, Uehlinger DE, et al. Plasma levels and cardiovascular, endocrine and excretory effects of atrial natriuretic peptide receptors in rat tissues. J Clin Endocrinol Metab 1986; 62: 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  18. Metzler CH, Ramsay DJ. Atrial peptide potentiates renal responses to volume expansion in conscious dogs. Am J Physiol 1989; 256: R284–R289.

    PubMed  CAS  Google Scholar 

  19. Cuneo RC, Espiner EA, Micholls MG, et al. Renal, hemodynamic, and hormonal responses to atrial natriuretic peptide infusions in normal man, and effects of sodium intake. J Clin Endocrinol Metab 1986; 63: 946–953.

    Article  PubMed  CAS  Google Scholar 

  20. Yates NA, Coghlan JP, Murphy GJ, et al. Renal actions of atrial natriuretic factor: modulation of effect by changes in sodium status and aldosterone. Am J Physiol 1990; 258: F684–F689.

    PubMed  CAS  Google Scholar 

  21. Burgess WJ, Balment RJ. The involvement of vasopressin in the renal actions of atrial natriuretic peptide in conscious fluid-balanced rats. J Endocrinol 1993; 138: 413–420.

    Article  PubMed  CAS  Google Scholar 

  22. Fraenkel MB, Aldred GP, McDougall JG. Sodium status affects GC-B natriuretic peptide receptors mRNA levels, but not GC-A or C receptor mRNA levels, in the sheep kidney. Clin Sci 1994; 86: 517–522.

    PubMed  CAS  Google Scholar 

  23. Holmes SJ, Espiner EA, Richards AM, et al. Renal, endocrine, and hemodynamic effects of brain natriuretic peptide in normal man. J Clin Endocrinol Metab 1993; 76: 91–96.

    Article  PubMed  CAS  Google Scholar 

  24. Yandle T, Richards A, Gilbert A, et al. Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol Metab 1993; 76: 832–838.

    Article  PubMed  CAS  Google Scholar 

  25. Florkowski CM, Richards AM, Espiner EA, et al. Renal, endocrine, and hemodynamic interactions of atrial and brain natriuretic peptides in normal men. Am J Physiol 1994; 266: R1244–R1250.

    PubMed  CAS  Google Scholar 

  26. Itoh H, Sagawa N, Mori T, et al. Plasma brain natriuretic peptide level in pregnant women with pregnancy-induced hypertension. Obstet Gynecol 1993; 82: 71–77.

    PubMed  CAS  Google Scholar 

  27. Cusson JR, Gutkowska J, Rey E, et al. Plasma concentration of atrial natriuretic factor in normal pregnancy. N Engl J Med 1985; 313: 1230–1231.

    PubMed  CAS  Google Scholar 

  28. Steegers EAP, van Lakwijk HPJM, Benraad TJ, et al. Atrial natriuretic peptide (ANP) in normal pregnancy: a longitudinal study. Clin Exp Hypertens 1990; B9: 273–292.

    Google Scholar 

  29. Lowe SA, Macdonald GJ, Brown MA. Acute and chronic regulation of atrial natriuretic peptide in human pregnancy: a longitudinal study. J Hypertens 1992; 10: 821–829.

    PubMed  CAS  Google Scholar 

  30. Mukaddam-Daher S, Gutkowska J, Nuwayhid BS, et al. Atrial natriuretic factor in ovine pregnancy: plasma levels, molecular forms and biological activity. Regul Pept 1994; 51: 131–139.

    Article  PubMed  CAS  Google Scholar 

  31. Robillard JE, Nakamura KT, Varille VA, et al. Plasma and urinary clearance rates of atrial natriuretic factor during ontogeny in sheep. J Dev Physiol 1988; 10: 335–346.

    PubMed  CAS  Google Scholar 

  32. Castro LC, Lam RW, Ross MG, et al. Atrial natriuretic peptide in the sheep. J Dev Physiol 1988; 10: 235–246.

    PubMed  CAS  Google Scholar 

  33. Benjamin BA. Effects of ANF prohormone peptides in conscious monkeys. Clin Exp Pharmacol Physiol 1995; 22: 125–129.

    Article  PubMed  CAS  Google Scholar 

  34. Dietz JR, Vesely DL, Gower WR, et al. Secretion and renal effects of ANF prohormone peptides. Clin Exp Pharmacol Physiol 1995; 22: 115–120.

    Article  PubMed  CAS  Google Scholar 

  35. Zeidel ML. Regulation of collecting duct Na’reabsorption by ANP 31–67. Clin Exp Pharmacol Physiol 1995; 22: 121–124.

    Article  PubMed  CAS  Google Scholar 

  36. Gant NF, Worley RJ, Everett RB, et al. Control of vascular responsiveness during human pregnancy. Kidney Int 1980; 18: 253–258.

    Article  PubMed  CAS  Google Scholar 

  37. McLaughlin MK, Conrad KP. Nitric oxide biosynthesis during pregnancy: implications for circulatory changes. Clin Exp Pharmacol Physiol 1995; 22: 164–171.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Novak K, Kaufman S. Atrial natriuretic factor release during pregnancy in rats. J Physiol 1995; 488: 509–514.

    PubMed  CAS  Google Scholar 

  39. Kaufman S. Control of intravascular volume during pregnancy. Clin Exp Pharmacol Physiol 1995; 22: 157–163.

    Article  PubMed  CAS  Google Scholar 

  40. Deng Y, Kaufman S. Effect of pregnancy on activation of central pathways following atrial distension. Am J Physiol 1995; 269: R552–R556.

    PubMed  CAS  Google Scholar 

  41. Kovacs L, Robertson GL. Disorders of water balancehyponatraemia and hypernatraemia. Baillieres Clin Endocrinol Metab 1992; 6: 107–127.

    Article  PubMed  CAS  Google Scholar 

  42. Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol 1992; 6: 104–112.

    Article  PubMed  CAS  Google Scholar 

  43. Verkman AS. Water channels in cell membranes. Annu Rev Physiol 1992; 54: 97–108.

    Article  PubMed  CAS  Google Scholar 

  44. Hays RM, Franki N, Simon H, et al. Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am J Physiol 1994; 267: C1507–C1524.

    PubMed  CAS  Google Scholar 

  45. Sabolic I, Brown D. Water channels in renal and nonrenal tissues. News in Physiol Sci 1995; 10: 12–17.

    Google Scholar 

  46. Brown D, Katsura T, Kawashima M, et al. Cellular distribution of the aquaporins: a family of water channel proteins. Histochem Cell Biol 1995; 104: 1–9.

    Article  PubMed  CAS  Google Scholar 

  47. Verkman AS, Van Hoek AN, Ma T, et al. Water transport across mammalian cell membranes. Am J Physiol 1996; 270: C12–C30.

    PubMed  CAS  Google Scholar 

  48. Knepper MA, Wade JB, Terris J, et al. Renal aquaporins. Kidney Int 1996; 49: 1712–1717.

    Article  PubMed  CAS  Google Scholar 

  49. Van Lieburg AF, Knoers NVAM, Deen PMT. Discovery of aquaporins: a breakthrough in research on renal water transport. Pediatr Nephrol 1995; 9: 228–234.

    Article  PubMed  Google Scholar 

  50. Nielsen S, Marples D, Froklaer J, et al. The aquaporin family of water channels in kidney: an update on physiology and pathophysiology of aquaporin-2. Kidney Int 1996; 49: 1718–1723.

    Article  PubMed  CAS  Google Scholar 

  51. King LS, Nielsen S, Agre P. Aquaporin-1 water channel protein in lung. J Clin Invest 1996; 97: 2183–2191.

    Article  PubMed  CAS  Google Scholar 

  52. Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 1988; 263: 15634–15642.

    PubMed  CAS  Google Scholar 

  53. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 1991; 88: 11110–11114.

    Article  PubMed  CAS  Google Scholar 

  54. Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256: 385–387.

    Article  PubMed  CAS  Google Scholar 

  55. Brown D, Verbavatz J-M, Valenti G, et al. Localization of the CHIP28 water channel in reabsortive segments of the rat male reproductive tract. Eur J Cell Biol 1993: 61: 264273.

    Google Scholar 

  56. Deen PMT, Dempster JA, Wieringa B, et al. Isolation of a cDNA for rat CHIP28 water channel: high mRNA expression in kidney cortex and inner medulla. Biochem Biophys Res Commun 1992; 188 (3): 1267–1273.

    Article  PubMed  CAS  Google Scholar 

  57. Bondy C, Chin E, Smith BL, et al. Developmental gene expression and tissue distribution of the CHIP28 water channel protein. Proc Natl Acad Sci USA 1993; 90: 4500–4504.

    Article  PubMed  CAS  Google Scholar 

  58. Agre P, Baumgarten R, Preston GM, et al. Human red cell aquaporin CHIP: II. Expression during normal fetal development and in a novel form of congenital dyserythropoietic anemia. J Clin Invest 1994; 94: 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  59. Moon C, Preston GM, Griffin CA, et al. The human aquaporin-CHIP gene. J Biol Chem 1993; 268 (21): 15772–15778.

    PubMed  CAS  Google Scholar 

  60. Preston GM, Smith BL, Zeidel ML, et al. Mutation in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 1994; 265: 1585–1587.

    Article  PubMed  CAS  Google Scholar 

  61. Gorin NB, Yancey SB, Cline J, et al. The major intrinsic protein (MIP) of the bovine lens fiber membrane. Cell 1984; 39: 49–59.

    Article  PubMed  CAS  Google Scholar 

  62. Reizer J, Reizer A, Saier MH. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 1993; 28 (3): 235–257.

    Article  PubMed  CAS  Google Scholar 

  63. Mulders SM, Preston GM, Deen PMT, et al. Water channel properties of major intrinsic protein of lens. J Biol Chem 1995; 270: 9010–9016.

    Article  PubMed  CAS  Google Scholar 

  64. Shiels A, Bassnetts. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nature Genet 1996; 12: 212–215.

    Article  PubMed  CAS  Google Scholar 

  65. Fushimi K, Uchida S, Hara Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 1993; 361: 549–552.

    Article  PubMed  CAS  Google Scholar 

  66. Ma T, Hasegawa H, Skach WR, et al. Expression, functional analysis, and in situ hybridization of a cloned rat kidney collecting duct water channel. Am J Physiol 1994; 266: C189–C197.

    PubMed  CAS  Google Scholar 

  67. Nielsen S, Digiovanni SR, Christensen EI, et al. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 1993; 90: 11663–11667.

    Article  PubMed  CAS  Google Scholar 

  68. Jo I, Harris HW, Amendt-Raduege AM, et al. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci USA 1995; 92: 1876–1880.

    Article  PubMed  CAS  Google Scholar 

  69. Nielsen S, Marples D, Birn H, et al. Expression of VAMP2-like protein in kidney collecting duct intracellular vesicles colocalization with aquaporin-2 water channels. J Clin Invest 1995; 96: 1834–1844.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto T, Sasaki S, Fushimi K, et al. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Pathol 1995;268: C1546- C 1551.

    Google Scholar 

  71. Brown D, Stow JL, Protein trafficking and polarity in kidney epithelium: from cell biology to physiology. Am Physiol Soc 1996; 76: 245–297.

    CAS  Google Scholar 

  72. Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK, epithelial cells. Am J Physiol 1996; 270: F548–F553.

    PubMed  CAS  Google Scholar 

  73. Uchida S, Sasaki S, Fushimi K, et al. Isolation of human aquaporin-CD gene. J Biol Chem 1994; 269: 23451–23455.

    PubMed  CAS  Google Scholar 

  74. van Lieburg AF, Knoers VVAM, Mallmann R, et al. Normal fibrinolytic responses to 1-desamino-8-D-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin 2 gene. Nephron 1996; 72: 544–546.

    Article  PubMed  Google Scholar 

  75. Marples D, Frokiaer J, Dorup J, et al. Hypokalemiainduced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 1996; 97: 1960–1968.

    Article  PubMed  CAS  Google Scholar 

  76. Marples D, Christensen S, Christensen EI, et al. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 1995; 95: 1838–1845.

    Article  PubMed  CAS  Google Scholar 

  77. Fujita N, Ishikawa SE, Sasaki S, et al. Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol 1995; 269: F926–F931.

    PubMed  CAS  Google Scholar 

  78. Yamamoto T, Sasaki S, Fushimi K et al. Expression of AQP family in rat kidneys during development and maturation. Am J Physiol 1997; 272: F1988–F2004.

    Google Scholar 

  79. Wintour EM, Shandley L, Effects of fetal fluid balance on amniotic fluid volume. Semin Perinatol 1993; 17: 158–172.

    PubMed  CAS  Google Scholar 

  80. Ervin MG, Kullama LK, Ross MG, et al. Vasopressin receptors and effects during fetal development. Regul Pept 1993; 45: 203–208.

    Article  PubMed  CAS  Google Scholar 

  81. Wintour EM, Congiu M, Hardy KJ, et al. Regulation of urine osmolality in fetal sheep. Q J Exp Physiol 1982; 67: 427–435.

    PubMed  CAS  Google Scholar 

  82. Home RSC, MacIsaac RJ, Moritz KM, et al. Effect of arginine vasopressin and parathyroid hormone-related protein on renal function in the ovine foetus. Clin Exp Pharmacol Physiol 1993; 20: 569–577.

    Article  Google Scholar 

  83. Raina S, Preston GM, Guggino WB, et al. Molecular cloning and characterization of an aquaporin cDNA from salivary, acrimal, and respiratory tissues. J Biol Chem 1995; 270: 1908–1912.

    Article  PubMed  CAS  Google Scholar 

  84. Ishibashi K, Sasaki S, Fushima K, et al. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 1994; 91: 6269–6273.

    Article  PubMed  CAS  Google Scholar 

  85. Valenti G, Verbavatz J, Sabolic I, et al. A basolateral CHIP28/MIP2- related protein (BLIP) in kidney principal cells and gastric parietal cells. Am J Physiol 1994; 267: C812–C820.

    PubMed  CAS  Google Scholar 

  86. Ecelbarger CA, Terris J, Frindt G, et al. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 1995; 269: F663–F672.

    PubMed  CAS  Google Scholar 

  87. Jung FF, Tang S, Sabolic I, et al. Angiotensin II (ANGII) upregulates CHIP28 expression in immortalized, transformed rat proximal tubule cells (IRPTC). J Am Soc Nephrol 1994; 5: 274a.

    Google Scholar 

  88. Terris J, Ecelbarger CA, Marples D, et al. Distribution of aquaporin-4 water channel expression within the rat kidney. Am J Physiol 1995; 269: F775–F785.

    PubMed  CAS  Google Scholar 

  89. Ma T, Young B, Gillespie A et al. Generation and phenotype of a transgenic knock out mouse lacking the mercurial insensitive water channel aquaporin 4. J Clin Invest 1997; 100: 957–962.

    Article  PubMed  CAS  Google Scholar 

  90. Strang LB, Fetal lung liquid: secretion and reabsorption. Physiol Rev 1991; 71: 991–1016.

    PubMed  CAS  Google Scholar 

  91. Hooper SB, Harding R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol 1995; 22: 235–247.

    Article  PubMed  CAS  Google Scholar 

  92. Wallace MJ, Hooper SB, Harding R. Effects of elevated fetal cortisol concentrations on the volume, secretion and reabsorption of lung liquid. Am J Physiol 1995; 269: R881–R887.

    PubMed  CAS  Google Scholar 

  93. Davis TA, Gause G, Perks AM, et al. Effects of intravenous saline infusion on fetal ovine lung liquid secretion. Am J Physiol 1992; 262: R1117–R1120.

    PubMed  CAS  Google Scholar 

  94. Cummings JV, Carlton DP, Poulain FR, et al. Vasopressin effects on lung liquid volume in fetal sheep. Pediatr Res 1995; 38: 30–35.

    Article  PubMed  CAS  Google Scholar 

  95. Matthay MA, Folkesson,HG, Verkman AS, Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physiol 1996; 270: L487–L503.

    PubMed  CAS  Google Scholar 

  96. Umenishi F, Matthay MA, Carter EP, et al. Developmental expression of rat lung water channels in the perinatal period. FASEB 1996; 10: 144 (A25).

    Google Scholar 

  97. Monson JF, Williams DJ, Osmoregulatory adaption in pregnancy and its disorders. J Endocr 1992; 132: 7–9.

    Article  PubMed  CAS  Google Scholar 

  98. Lindheimer MD, Barron WM. Water metabolism and vasopressin secretion during pregnancy. Baillieres Clin Obstet Gynaecol 1994; 8: 311–331.

    Article  PubMed  CAS  Google Scholar 

  99. Bell RJ, Laurence BM, Meehan PJ, et al. Regulation and function of arginine vasopressin in pregnant sheep. Am J Physiol 1986; 250: F777–F780.

    PubMed  CAS  Google Scholar 

  100. Olsson K, Pregnancy-a challenge to water balance. News Physiol Sci 1986; 1: 131–134.

    Google Scholar 

  101. Davison JM, Shiells EA, Philips PR, et al. Serial evaluation of vasopressin release and thirst in human pregnancy. Role of human chorionic gonadotrophin in the osmoregulatory changes of gestation. J Clin Invest 1988; 81: 798–806.

    Article  PubMed  CAS  Google Scholar 

  102. Bell RJ, Eddie LW, Lester AR, et al. Relaxin in human pregnancy serum measured with an homologous radioimmunoassay. Obstet Gynecol 1987; 69: 585–589.

    PubMed  CAS  Google Scholar 

  103. Roche PJ, Crawford RJ, Tregear GW. A single copy relaxin-like gene sequence is present in the sheep. Mol Cell Endocrinol 1993; 91: 21–28.

    Article  PubMed  CAS  Google Scholar 

  104. Eddie LW, Bell RJ, Lester A, et al. Radioimmunoassay of relaxin in pregnancy with an analogue of human relaxin. Lancet 1986; 1: 1344–1346.

    Article  PubMed  CAS  Google Scholar 

  105. Sherwood OD, Crnekovic VE, Gordon WL, et al. Radio-immunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology 1980; 107: 691–698.

    Article  PubMed  CAS  Google Scholar 

  106. Bryant-Greenwood GD, Schwabe C. Human relaxins: chemistry and biology. Endocr Rev 1994; 15: 5–26.

    PubMed  CAS  Google Scholar 

  107. Kakouris H, Eddie LW, Summers RJ. Cardiac effects of relaxin in rats. Lancet 1992; 339: 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  108. Osheroff PL, Phillips HS. Autographic localization of relaxin binding sites in rat brain. Proc Natl Acad Sci USA 1991; 88: 6413–6417.

    Article  PubMed  CAS  Google Scholar 

  109. Gagliardi CL. Goldsmith LT, Saketos M, et al. Human chorionic gonadotropin stimulation of relaxin secretion by luteinized human granulosa cells. Fertil Steril 1992; 58: 314–320.

    PubMed  CAS  Google Scholar 

  110. Johnson MR, Okokon E, Collins WP, et al. The effect of human chorionic gonadotropin and pregnancy on the circulating level of relaxin. J Clin Endocrinol Metab 1991; 72: 1042–1047.

    Article  PubMed  CAS  Google Scholar 

  111. Weisinger RS, Burns P, Eddie LW, et al. Relaxin alters the plasma osmolality/arginine vasopressin relationship in the rat. J Endocrinol 1993; 137: 505–510.

    Article  PubMed  CAS  Google Scholar 

  112. Thornton SN, Fitzsimons JT. The effects of centrally administered porcine relaxin on drinking behaviour in male and female rats. J Neuroendocrinol 1995; 7: 165–169.

    Article  PubMed  CAS  Google Scholar 

  113. Zhao S, Malmgren CH, Shanks RD, et al. Monoclonal antibodies specific for rat relaxin VIII passive immunization with monoclonal antibodies throughout the second half of pregnancy reduces water consumption in rats. Endocrinology 1995; 136: 1892–1897.

    Article  PubMed  CAS  Google Scholar 

  114. Gunnersen JM, Crawford RJ, Tregear GW. Expression of the relaxin gene in rat tissues. Mol Cell Endocrinol 1995; 110: 55–64.

    Article  PubMed  CAS  Google Scholar 

  115. Cremisi HD, Mitch WE. Profound hypotension and sodium retention with the ovarian hyperstimulation syndrome. Am J Kidney Dis 1994; 24: 854–857.

    PubMed  CAS  Google Scholar 

  116. Smith CH, Moe AJ, Ganapathy V. Nutrient transport pathways across the epithelium of the placenta. Annu Rev Nutr 1992; 12: 183–206.

    Article  PubMed  CAS  Google Scholar 

  117. MacIsaac RJ, Heath JA, Rodda CP, et al. Role of the fetal parathyroid glands and parathyroid hormone-related protein in the regulation of placental transport of calcium, magnesium and inorganic phosphate. Reprod Fertil Dev 1991; 3: 447–457.

    Article  PubMed  CAS  Google Scholar 

  118. Strehler E. Recent advances in the molecular characterization of plasma membrane Ca2+ pumps. J Membr Biol 1991; 120: 1–15.

    Article  PubMed  CAS  Google Scholar 

  119. Glazier JD, Atkinson DE, Thornburg KL, et al. Gestational changes in Ca2+ transport across rat placenta and mRNA for calbindin9k and Ca2+-ATPase. Am J Physiol 1992; 263: R930–R935.

    PubMed  CAS  Google Scholar 

  120. Husain SM, Birdsey TJ, Glazier JD, et al. Effect of diabetes mellitus on maternofetal flux of calcium and magnesium and calbindin9K mRNA expression in rat placenta. Pediatr Res 1994; 35: 376–381.

    Article  PubMed  CAS  Google Scholar 

  121. Brun P, Durpet JM, Perret C, et al. Vitamin D-dependent calcium-binding proteins (CaPBs) in human fetuses: comparative distribution of 9K CaBP mRNA and 28K CaBP during development. Pediatr Res 1987; 21: 362–367.

    Article  PubMed  CAS  Google Scholar 

  122. Colignon H, Davicco M-J, Barlet J-P. Calcitonin mRNA expression and plasma calciotropic hormones in fetal lambs. Dom Animal Endocrinol 1996; 13: 269–276.

    Article  Google Scholar 

  123. Wintour EM. Water channels and urea transporters. Clin Exp Pharmacol Physiol 1996; 24: 1–9.

    Article  Google Scholar 

  124. Brunette MG, Leclerc M, Claveau D. Na+ transport by human placental brush border membranes: are there several mechanisms? J Cell Physiol 1996; 167: 72–80.

    Article  PubMed  CAS  Google Scholar 

  125. Leiser R, Kauffman P. Placental structure: in a comparative aspect. Exp Clin Endocrinol 1994; 102: 122–134.

    Article  PubMed  CAS  Google Scholar 

  126. Faber JJ, Anderson DF. Concentration of Na+ and Cl-1 in transplacental ultrafiltrate in sheep. J Physiol 1995; 487: 159–167.

    PubMed  CAS  Google Scholar 

  127. Faber JJ, Thornburg KL. Permeability of the placental membrane for hydrophilic substances. In: Faber JJ, Thornburg KL eds. Placental physiology. New York: Raven Press, 1983: 79–89.

    Google Scholar 

  128. Law CM, Barker DJP, Bull AR, et al. Maternal and fetal influences on blood pressure. Arch Dis Child 1991; 66: 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  129. Barker DJP, Gluckman PD, Godfrey KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938–941.

    Article  PubMed  CAS  Google Scholar 

  130. Robinson JS, Seamark RF, Owens JA. Placental function. Aust N Z J Obstet Gynaecol 1994; 34: 240–246.

    Article  PubMed  CAS  Google Scholar 

  131. Villar JV,, de Onis M, Kestler E et al. The differential neonatal morbidity of the intrauterine growth retardation syndrome. Am J Obstet Gynecol 1990; 163: 151–157.

    PubMed  CAS  Google Scholar 

  132. Silver M, Barnes RJ, Comline RS, et al. Placental blood flow: some fetal and maternal cardiovascular adjustments during gestation. J Reprod Fertil Suppl 1982; 31: 139–160.

    PubMed  CAS  Google Scholar 

  133. Beischer NA, Sivasamboo R, Vohra S, et al. Placental hypertrophy in severe pregnancy anemia. J Obstet Gynaecol Br Commonw 1970; 77: 398–409.

    Article  PubMed  CAS  Google Scholar 

  134. Godfrey KM, Redman WG, Barker DJP. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br J Obstet Gynaecol 1991; 98: 886–891.

    Article  PubMed  CAS  Google Scholar 

  135. Wintour EM, Alcorn D, McFarlane A, et al. Effect of maternal glucocorticoid treatment on fetal fluids in sheep at 0.4 gestation. Am J Physiol 1994; 266: R1174–R1181.

    PubMed  CAS  Google Scholar 

  136. Boura ALA, Walters WAW, Read MA, et al. Autacoids and control of human placental blood flow. Clin Exp Pharmacol Physiol 1994; 21: 737–748.

    Article  PubMed  CAS  Google Scholar 

  137. Myatt L, Brewer AS, Brockman DE. The comparative effects of big endothelin-1, endothelin-1, and endothelin-3 in the human fetal-placental circulation. Am J Obstet Gynecol 1992; 167: 1651–1656.

    PubMed  CAS  Google Scholar 

  138. Robaut C, Mondon F, Bandet J, et al. Regional distribution and pharmacological characterization of [125I] endothelin-1 binding sites in human fetal placental vessels. Placenta 1991; 12: 55–67.

    Article  PubMed  CAS  Google Scholar 

  139. McQueen J, Kingdom JCP, Connell JMC. Fetal endothelin levels and placental vascular endothelin receptors in intrauterine growth retardation. Obstet Gynecol 1993; 82: 992–998.

    CAS  Google Scholar 

  140. Kilpatrick SJ, Roberts JM, Lykins DL, et al. Characterization and ontogeny of endothelin receptors in human placenta. Am J Physiol 1993; 264: E367–E372.

    PubMed  CAS  Google Scholar 

  141. Gude NM, King RG, Brennecke SP. Endothelin: release by and potent constrictor effect on the fetal vessels of human perfused placental lobules. Reprod Fertil Dev 1991; 3: 495–500.

    Article  PubMed  CAS  Google Scholar 

  142. Handwerker S. Endothelins and the placenta. J Lab Clin Med 1995; 125: 679–681.

    Google Scholar 

  143. Gude NM, King RG, Brennecke SP. Role of endothelium-derived nitric oxide in maintenance of low fetal vascular resistance in placenta. Lancet 1990; 2: 1589–1590.

    Article  Google Scholar 

  144. Gude NM. Endothelium-derived relaxing factor (nitric oxide) and the placenta. In: Rice GE, Brennecke SP, eds. Molecular aspects of placental and fetal membrane autacoids. Boca Raton, FL: CRC Press, 1993: 263–276.

    Google Scholar 

  145. Gude NM, Dilulio J, Brennecke SP, et al. Human placental villous nitric oxide synthase activity. Pharmacol Comm 1994; 4: 163–171.

    CAS  Google Scholar 

  146. Gude NM, Xie CY, King RG, et al. Effects of eicosanoid and endothelial cells derived relaxing factor inhibition on fetal vascular tone and responsiveness in the human perfused placenta. Troph Res 1993; 7: 133–145.

    CAS  Google Scholar 

  147. Graham CH, Watson JD, Blumenfeld AJ, et al. Expression of atrial natriuretic peptide by third-trimester placental cytotrophoblasts in women. Biol Reprod 1996; 54: 834–840.

    Article  PubMed  CAS  Google Scholar 

  148. Hatjis CG, Greelish JP, Kofinas AD, et al. Atrial natriuretic factor maternal and fetal concentrations in severe preeclampsia. Am J Obstet Gynecol 1989; 161: 1015–1019.

    PubMed  CAS  Google Scholar 

  149. Fujino Y, Ross MG, Ervin MG, et al. Ovine maternal and fetal glomerular atrial natriuretic factor receptors: response to dehydration. Biol Neonate 1992; 62: 120–126.

    Article  PubMed  CAS  Google Scholar 

  150. Potvin W, Varma DR. Down-regulation of myometrial atrial natriuretic factor receptors by progesterone and pregnancy and up-regulation by oestrogen in rats. J Endocrinol 1991; 131: 259–266.

    Article  PubMed  CAS  Google Scholar 

  151. Jansson TB. Low-dose infusion of atrial natriuretic peptide in the conscious guinea pig increases blood flow to the placenta of growth-retarded fetuses. Am J Obstet Gynecol 1992; 166: 213–218.

    PubMed  CAS  Google Scholar 

  152. Petraglia F, Florio P, Nappi C, et al. Peptide signalling in human and membranes: autocrine, paracrine and endocrine mechanisms. Endocr Rev 1996; 17: 156–186.

    PubMed  CAS  Google Scholar 

  153. Clifton VL, Read MA, Boura ALA, et al. Adrenocorticotropin causes vasolidation in the human fetal-placental circulation. J Clin Endocrinol Metab 1996; 81: 1406 1410.

    Google Scholar 

  154. Brown MA. The physiology of pre-eclampsia. Clin Exp Pharmacol Physiol 1995; 22: 781–791.

    Article  PubMed  CAS  Google Scholar 

  155. Easterling TR, Benedetti TJ. Preeclampsia: a hyper-dynamic disease model. Am J Obstet Gynecol 1989; 160: 1447–1453.

    PubMed  CAS  Google Scholar 

  156. Cunningham FG, Lindheimer MD. Hypertension in pregnancy. N Engl J Med 1992; 326: 927–932.

    Article  PubMed  CAS  Google Scholar 

  157. Brown MA, Zammit VC, Mitar DM. Extracellular fluid volumes in pregnancy-induced hypertension. J Hypertens 1992; 10: 61–68.

    Article  PubMed  CAS  Google Scholar 

  158. Brown MA, Gallery ED. Volume homeostasis in normal pregnancy and pre-eclampsia: physiology and clinical implications. Baillieres Clin Obstet Gynaecol 1994; 8: 287–310.

    Article  PubMed  CAS  Google Scholar 

  159. Pinto A, Sorrentino R, Sorrentino P, et al. Endothelial-derived relaxin factor released by endothelial cells of human umbilical vessels and its impairment in pregnancy-induced hypertension. Am J Obstet Gynecol 1991; 164: 507–513.

    PubMed  CAS  Google Scholar 

  160. Schiff E, Friedman SA, Baumann P, et al. Tumor necrosis factor-a in pregnancies associated with preeclampsia or small-for-gestational-age newborns. Am J Obstet Gynecol 1994; 170: 1224–1229.

    PubMed  CAS  Google Scholar 

  161. Brown MA. Pre-eclampsia: recognition, prevention and management. Nephrol 1995; 1: 163–173.

    Article  Google Scholar 

  162. Baker PN, Davidge ST, Barankiewicz J, et al. Plasma of preeclamptic women stimulates and then inhibits endothelial prostacyclin. Hypertension 1996; 27: 56–61.

    Article  PubMed  CAS  Google Scholar 

  163. Fievet P, Fournier A,, de Bold A et al. Atrial natriuretic factor in pregnancy-induced hypertension and preeclampsia: increased plasma concentrations possibly explaining these hypovolemic states with paradoxical hyporeninism. Am J Hypertens 1988; 1: 16–21.

    PubMed  CAS  Google Scholar 

  164. Steegers EAP, Eskes TKAB, Hein PR. Dietary sodium restriction during pregnancy; a historical review. Eur J Obstet Gynecol Reprod Biol 1991; 40: 83–90.

    Article  PubMed  CAS  Google Scholar 

  165. van Buul EJA, Steegers EAP, Jongsma HW, et al. Haematological and biochemical profile of uncomplicated pregnancy in nulliparous women; a longitudinal study. Neth J Med 1995; 46: 73–85.

    Article  PubMed  Google Scholar 

  166. Davey DA, O’Sullivan WJ, McClure Brown JC. Total exhangeable sodium in normal pregnancy and in pre-eclampsia. Lancet 1961; 1: 519–523.

    Article  PubMed  CAS  Google Scholar 

  167. Szlachter BN, Quagliarello J, Jewelewicz R, et al. Relaxin in normal and pathogenic pregnancies. Obstet Gynecol 1982; 59: 167–170.

    PubMed  CAS  Google Scholar 

  168. Hagemann A, Nielsen AH, Poulsen K. The uteroplacental renin-angiotensin system: a review. Exp Clin Endocrinol 1994; 102: 252–261.

    Article  PubMed  CAS  Google Scholar 

  169. Arngrimsson R, Purandare S, Connor M, et al. Angiotensinogen: a candidate gene involved in preeclampsia. Nature Genet 1993; 4: 114–115.

    Article  PubMed  CAS  Google Scholar 

  170. Ward RM. Drug therapy of the fetus. J Clin Pharmacol 1993; 33: 780–789.

    PubMed  CAS  Google Scholar 

  171. Wacker J, E-Mistry N, Bauer H, et al. Mineralocorticoids and mineralocorticoid receptors in mononuclear leukocytes in patients with pregnancy-induced hypertension. J Clin Endocrinol Metab 1992; 74: 910–913.

    Article  PubMed  CAS  Google Scholar 

  172. Armanini D, Zennaro CM, Martella L, et al. Mineralocorticoid effector mechanisms in preeclampsia. J Clin Endocrinol Metab 1992; 74: 946–949.

    Article  PubMed  CAS  Google Scholar 

  173. Walker BR, Williamson PM, Brown MA, et al. 11βhydroxysteroid dehydrogenase and its inhibitors in hypertensive pregnancy. Hypertension 1995; 25: 626–630.

    Article  PubMed  CAS  Google Scholar 

  174. Baker PN, Broughton Pipkin F, Symonds EM. Platelet angiotensin II binding sites in normotensive and hypertensive women. Br J Obstet Gynaecol 1991; 98: 436–440.

    Article  PubMed  CAS  Google Scholar 

  175. Pawlak MA, Macdonald GJ, Altered number of platelet angiotensin II receptors in relation to plasma agonist concentrations in normal and hypertensive pregnancy. J Hypertens 1992; 10: 813–819.

    Article  PubMed  CAS  Google Scholar 

  176. Baker PN, Broughton Pipkin F. Platelet angiotensin II binding in pregnant women with chronic hypertension. Am J Obstet Gynecol 1994; 170: 1301–1302.

    PubMed  CAS  Google Scholar 

  177. Yang Y, Macdonald GJ, Duggan KA. Differential regulation of uterine and glomerular angiotensin II receptors in normal and hypertensive pregnancy in the rat. Clin Exp Pharmacol Physiol 1994; 21: 253–256.

    Article  PubMed  CAS  Google Scholar 

  178. Knock GA, Sullivan MHF, McCarthy A, et al. Angiotensin II (AT,) vascular binding sites in human placentae from normal-term, preeclamptic and growth retarded pregnancies. J Pharmacol Exp Ther 1996; 271: 1007–1015.

    Google Scholar 

  179. Rosa FW, Bosco LA, Fossum-Graham C, et al. Neonatal anuria with maternal angiotensin-converting enzyme inhibition. Obstet Gynecol 1989; 74: 371–374.

    PubMed  CAS  Google Scholar 

  180. Piper JM, Ray WA, Rosa FW. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors. Obstet Gynecol 1992: 80: 429–432.

    PubMed  CAS  Google Scholar 

  181. Hanssens M, Keirse MJNC, Vankelecom F, et al. Fetal and neonatal effects of treatment with angiotensinconverting enzyme inhibitors in pregnancy. Obstet Gynecol 1991; 78: 128–135.

    PubMed  CAS  Google Scholar 

  182. Brent RL, Beckman DA. Angiotensin-coverting enzyme inhibitors, an embryopathic class of drugs with unique properties: information for clinical teratology counselors. Teratology 1991; 43: 543–546.

    Article  PubMed  CAS  Google Scholar 

  183. Cuniff C, Jones KL, Phillipson K, et al. Oligohydramnios and renal tubular malformation associated with maternal enalapril use. Am J Obstet Gynecol 1990; 162: 187–189.

    Google Scholar 

  184. Pryde PG, Sedman AB, Nugent CE, et al. Angiotensinconverting enzyme inhibitor fetopathy. J Am Soc Nephrol 1993; 3: 1575–1582.

    PubMed  CAS  Google Scholar 

  185. Barr M Jr, Cohen MM Jr. ACE inhibitor fetopathy and hypocalciuria: the kidney-skull connection. Teratology 1991; 44: 485–495.

    Article  PubMed  CAS  Google Scholar 

  186. Mounier F, Hinglais N, Sich M, et al. Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int 1987; 32: 684–690.

    Article  PubMed  CAS  Google Scholar 

  187. Darby IA, Congiu M, Fernley RT, et al. Cellular and ultrastructural location of angiotensinogen in rat and sheep kidney. Kidney Int 1994; 46: 1557–1560.

    Article  PubMed  CAS  Google Scholar 

  188. Olson AL, Perlman S, Robillard JE, Developmental regulation of angiotensinogen gene expression in sheep. Pediatr Res 1990; 28: 183–185.

    Article  PubMed  CAS  Google Scholar 

  189. Olson AL, Robillard JE, Kisker CT. et al. Negative regulation of angiotensinogen gene expression by glucocorticoids in fetal sheep liver. Pediatr Res 1991; 30: 256–260.

    Article  PubMed  CAS  Google Scholar 

  190. Celio MR, Groscurth P, Inagami T. Ontogeny of renin immunoreactive cells in the human kidney. Anat Embryol 1985; 173: 149–155.

    Article  PubMed  CAS  Google Scholar 

  191. Phat VN, Camilleri JP, Bariety J, et al. Immunohistochemical characterization of renin-containing cells in the human juxtaglomerular apparatus during embryonal and fetal development. Lab Invest 1981; 45: 387–390.

    PubMed  CAS  Google Scholar 

  192. Egerer G, Taugner R, Tiedemann K. Renin immunohistochemistry in the mesonephros and metanephros of the pig embryo. Histochemistry 1984; 81: 385–390.

    Article  PubMed  CAS  Google Scholar 

  193. Taylor GM, Peart WS, Porter KA, et al. Concentration and molecular forms of active and inactive renin in human fetal kidney, amniotic fluid and adrenal gland: evidence for renin-angiotensin system hyperactivity in 2nd trimester of pregnancy. J Hypertens 1986; 4: 121–129.

    Article  PubMed  CAS  Google Scholar 

  194. Kon Y, Hashimoto Y, Kitagawa H, et al. An immunohistochemical study on the embyonic development of renin-containing cells in the mouse and pig. Anat Histol Embryol 1989; 18; 14–26.

    Article  PubMed  CAS  Google Scholar 

  195. Gomez AR, Cassis L, Lynch K, et al. Fetal expression of the angiotensinogen gene. Endocrinology 1988; 123: 2298–2302.

    Article  PubMed  CAS  Google Scholar 

  196. Gomez RA, Lynch KR, Sturgill BC, et al. Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 1989; 257: F850–F858.

    PubMed  CAS  Google Scholar 

  197. Gomez RA, Pupilli C, Everett AD. Molecular and cellular aspects of renin during kidney ontogeny. Pediatr Nephrol 1991; 5: 80–87.

    Article  PubMed  CAS  Google Scholar 

  198. Yosipiv IV, Dipp S, El-Dahr SS. Ontogeny of somatic angiotensin-converting enzyme. Hypertension 1994; 23: 369–374.

    Article  PubMed  CAS  Google Scholar 

  199. Richoux JP, Amsaguine S, Grignon G, et al. Earliest renin containing cell differentiation during ontogenesis in the rat: an immunocytochemical study. Histochemistry 1987; 88: 41–46.

    Article  PubMed  CAS  Google Scholar 

  200. Gröne H, Simon M, Fuchs E. Autoradiographic characterization of angiotensin receptor subtypes in fetal and adult human kidney. Am J Physiol 1992; 262: F326–F331.

    PubMed  Google Scholar 

  201. Wintour EM, Alcorn D, Butkus A, et al. Ontogeny of hormonal and excretory function of the meso-and metanephros in the ovine fetus. Kidney Int 1996; 50: 1624–1633.

    Article  PubMed  CAS  Google Scholar 

  202. Butkus A, Albiston A, Alcorn D et al. Ontogeny of angiotensin II receptors types 1 and 2 in ovine mesonephros and metanephras. Kidney Int 1997; 51: 628–636.

    Article  Google Scholar 

  203. Schutz S, Le Moullec J-M, Corvol P, et al. Early expression of all the components of the renin-angiotensin-system in human development. Am J Pathol 1996; 149: 2067–2079.

    PubMed  CAS  Google Scholar 

  204. Wintour EM, Alcorn D, Rockell MD, Development and function of the fetal kidney. In: Brace RA, Hanson MA, Rodeck C, ed. Fetus and neonate, vol. 4. Cambridge University Press, 1997: 3–5.

    Google Scholar 

  205. Rahman ARA, Motwani JG, Lang CC, et al. Circulating angiotensin II and renal sodium handling in man: a dose-response study. Clin Sci 1993; 85: 147–156.

    PubMed  CAS  Google Scholar 

  206. Lumbers ER. Functions of the renin-angiotensin system during development. Clin Exp Pharmacol Physiol 1995; 22: 499–505.

    Article  PubMed  CAS  Google Scholar 

  207. Harding R, Hooper SB, Dickson KA. A mechanism leading to reduced lung expansion and lung hypoplasia in fetal sheep during oligohydramnios. Am J Obstet Gynecol 1990; 163: 1904–1913.

    PubMed  CAS  Google Scholar 

  208. Robillard JE, Gomez RA, Meernik JG, et al. Role of angiotensin II on the adrenal and vascular responses to hemorrhage during development in fetal lambs. Circ Res 1982; 50: 645–650.

    Article  PubMed  CAS  Google Scholar 

  209. Lumbers ER, Stevens AD. The effect of frusemide, saralasin and hypotension on fetal plasma renin activity and on fetal renal function. J Physiol 1987; 393: 479–490.

    PubMed  CAS  Google Scholar 

  210. Lumbers ER, Kingsford NM, Menzies RI, et al. Acute effects of captopril, an angiotensin-converting enzyme inhibitor, on the pregnant ewe and fetus. Am J Physiol 1992; 262: R754–R760.

    PubMed  CAS  Google Scholar 

  211. Robillard JE, Smith FG, Segar JL, et al. Mechanisms regulating renal sodium excretion during development. Pediatr Nephrol 1992; 6: 205–213.

    Article  PubMed  CAS  Google Scholar 

  212. Gomez AR, Robillard JE. Developmental aspects of the renal responses to hemorrhage during converting-enzyme inhibition in fetal lambs. Circ Res 1984; 54: 301–312.

    Article  PubMed  CAS  Google Scholar 

  213. Lumbers ER, Burrell JH, Menzies RI, et al. The effects of a converting enzyme inhibitor (captopril) and angiotensin II on fetal renal function. Br J Pharmacol 1993; 110: 821–827.

    Article  PubMed  CAS  Google Scholar 

  214. Tufro-McReddie A, Johns DW, Geary KM, et al. Angiotensin II type 1 receptor: role in renal growth and gene expression during normal development. Am J Physiol 1994; 266: F911–F918.

    PubMed  CAS  Google Scholar 

  215. Fogo A, Yoshida Y, Yared A, et al. Importance of angiogenic action of angiotensin II in the glomerular growth of maturing kidneys. Kidney Int 1990; 38: 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  216. Lane PH. Furosemide treatment, angiotensin II, and renal growth and development in the rat. Pediatr Res 1995; 37: 747–754.

    Article  PubMed  CAS  Google Scholar 

  217. Charbit M, Dechaux M, Blazy I, et al. Deleterious effects of inhibition of the renin-angiotensin system in neonatal rats. Pediatr Nephrol 1995; 9: 303–308.

    Article  PubMed  CAS  Google Scholar 

  218. Zemel S, Millan MA, Feuillan P, et al. Characterization and distribution of angiotensin-II receptors in the primate fetus. J Clin Endocrinol Metab 1990; 71 (4): 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  219. Grady EF, Sechi LA, Griffin CA, et al. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 1991; 88: 921–933.

    Article  PubMed  CAS  Google Scholar 

  220. Tsutsumi K, Stromberg C, Viswanathan M, et al. Angiotensin-II receptor subtypes in fetal tissues of the rat: autoradiography, guanine nucleotide sensitivity and association with phosphoinositide hydrolysis. Endocrinology 1991; 129: 1075–1082.

    Article  PubMed  CAS  Google Scholar 

  221. Ciurfo GM, Viswanathan M, Seltzer AM, et al. Glomerular angiotensin II receptor subtypes during development of rat kidney. Am J Physiol 1993; 265: F265–F271.

    Google Scholar 

  222. de Gasparo M, Levens NR. Pharmacology of angiotensin II receptors in the kidney. Kidney Int 1994; 46: 1486–1491.

    Article  PubMed  CAS  Google Scholar 

  223. Aguilera G, Kapur S, Feuillan P, et al. Developmental changes in angiotensin II receptor subtypes and AT1 receptor mRNA in rat kidney. Kidney Int 1994: 46: 973–979.

    Article  PubMed  CAS  Google Scholar 

  224. Forhead AJ, Fowden AL, Silver M, et al. Haemodynamic responses to an angiotensin II receptor antagonist (GR117289) in maternal and fetal sheep. Exp Physiol 1995; 80: 285–298.

    PubMed  CAS  Google Scholar 

  225. Brace RA. Current topic: progress toward understanding the regulation of amniotic fluid volume: water and solute fluxes in and through the fetal membranes. Placenta 1995; 16: 1–18.

    Article  PubMed  CAS  Google Scholar 

  226. Dickson KA, Harding R. Role of fetal sac fluids during maternal water deprivation in sheep. Exp Physiol 1994; 79: 147–160.

    PubMed  CAS  Google Scholar 

  227. Nijland MJM, Ross MG, Kullama LK, et al. DDAVPinduced maternal hyposmolality increases ovine fetal urine flow. Am J Physiol 1995; 268: R358–R365.

    PubMed  CAS  Google Scholar 

  228. Tangalakis K, Moritz K, Shandley L, et al. Effect of maternal glucocorticoid treatment on ovine fetal fluids at 0.6 gestation. Reprod Fertil Dev 1995; 7: 1595–1598.

    Article  PubMed  CAS  Google Scholar 

  229. Dodic M, Wintour EM. Effects of prolonged (48 H) infusion of cortisol on blood pressure, renal function and fetal fluids in the immature ovine foetus. Clin Exp Pharmacol Physiol 1994; 21: 971–980.

    Article  PubMed  CAS  Google Scholar 

  230. Fraenkel MB, Potocnik SJ, Wintour EM. Atrial natriuretic peptide receptors are present and functional by midgestation in fetal sheep. Am J Physiol 1994; 267: F825–F830.

    PubMed  CAS  Google Scholar 

  231. Walker MPR, Moore TR, Cheung CY, et al. Indomethacin-induced urinary flow rate reduction in the ovine fetus is associated with reduced free water clearance and elevated plasma arginine vasopressin levels. Am J Obstet Gynecol 1992; 167: 1723–1731.

    PubMed  CAS  Google Scholar 

  232. Rosen DJD, Rabinowitz R, Beyth Y, et al. Fetal urine production in normal twins and in twins with acute polyhydramnios. Fetal Diagn Ther 1990; 5: 57–60.

    Article  PubMed  CAS  Google Scholar 

  233. Wieacker P, Wilhelm C, Prompeler H, et al. Pathophysiology of polyhydramnios in twin transfusion syndrome. Fetal Diagn Ther 1992; 7: 87–92.

    Article  PubMed  CAS  Google Scholar 

  234. Nageotte MP, Hurwitz SR, Kaupke CJ, et al. Atriopeptin in the twin transfusion syndrome. Obstet Gynecol 1989; 73: 867–870.

    PubMed  CAS  Google Scholar 

  235. Rehan VK, Menticoglou SM, Seshia MMK, et al. Fetofetal transfusion in twins. Arch Dis Child 1995; 73: f41–f43.

    CAS  Google Scholar 

  236. Lopriore E, Vandenbussche FPHA, Tiersma ESM, et al. Twin-to-twin transfusion syndrome: new perspectives. J Pediatr 1995; 127: 675–680.

    Article  PubMed  CAS  Google Scholar 

  237. Saunders NJ, Snijders RJM, Nicolaides KH. Therapeutic amniocentesis in twin-twin transfusion syndrome appearing in the second trimester of pregnancy. Am J Obstet Gynecol 1992; 166: 820–824.

    PubMed  CAS  Google Scholar 

  238. Wintour EM, Laurence BM, Lingwood BE. Anatomy, physiology and pathology of the amniotic and allantoic compartments in the sheep and cow. Aust Vet J 1986; 63: 216–221.

    Article  PubMed  CAS  Google Scholar 

  239. Henry MM, Morris DD, Pugh DG. Hydrallantois associated with twin pregnancy in a mare. Equine Pract 1991; 13: 20–23.

    Google Scholar 

  240. Hedriana HL, Brace RA, Gilbert WM. Changes in blood flow to the ovine chorion and amnion across gestation. J Soc Gynecol Invest 1995; 2: 727–734.

    Article  CAS  Google Scholar 

  241. Gilbert WM, Brace RA. The missing link in amniotic fluid volume regulation: intramembranous absorption. Obstet Gynecol 1989; 74: 748–754.

    PubMed  CAS  Google Scholar 

  242. Gilbert WM, Brace RA. Novel determination of filtration coefficient of ovine placenta and intramembranous pathway. Am J Physiol 1990; 259: R1281–R1288.

    PubMed  CAS  Google Scholar 

  243. Ferguson JE II, Gorman JV, Bruns DE, et al. Abundant expression of parathyroid hormone-related protein in human amnion and its association with labor. Proc Natl Acad Sci USA 1992; 89: 8384–8388.

    Article  PubMed  CAS  Google Scholar 

  244. Germain AM, Attaroglu H, MacDonald PC, et al. Parathyroid hormone-related protein mRNA in avascular human amnion. J Clin Endocrinol Metab 1992; 75: 1173–1175.

    Article  PubMed  CAS  Google Scholar 

  245. Emly JF, Gregory J, Bowden SJ, et al. Immunohistochemical localization of parathyroid hormone-related peptide (PTHrP) in human term placenta and membranes. Placenta 1994; 15: 653–660.

    Article  PubMed  CAS  Google Scholar 

  246. Dunne FP, Ratcliffe WA, Mansour P, et al. Parathyroid hormone related protein (PTHrP) gene expression in fetal and extra-embryonic tissues of early pregnancy. Hum Reprod 1994; 9: 149–156.

    PubMed  CAS  Google Scholar 

  247. Mitchell MD, Hunter C, Dudley DJ, et al. Significant decrease in parathyroid hormone-related protein concentrations in amniotic fluid with labour at term but not preterm. Reprod Fertil Dev 1996; 8: 231–234.

    Article  PubMed  CAS  Google Scholar 

  248. Bruns ME, Ferguson JE, Bruns DE, et al. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acid in human amnion and choriondecidua: implications for secretion and function. Am J Obstet Gynecol 1995; 173: 739–746.

    Article  PubMed  CAS  Google Scholar 

  249. Dvir R, Golander A, Jaccard N, et al. Amniotic fluid and plasma levels of parathyroid hormone-related protein and hormonal modulation of its secretion by amniotic fluid cells. Eur J Endocrinol 1995; 133: 277–282.

    Article  PubMed  CAS  Google Scholar 

  250. Wu WX, Brooks J, Millar MR, et al. Localization of the sites of synthesis and action of prolactin by immunocytochemistry and in-situ hybridization within the human utero-placental unit. J Mol Endocrinol 1991; 7: 241–247.

    Article  PubMed  CAS  Google Scholar 

  251. Tadokoro N, Koibuchi N, Ohtake H, et al. Localization of prolactin and its receptor messenger RNA in the human decidua. Experientia 1995; 51: 1216–1219.

    Article  PubMed  CAS  Google Scholar 

  252. Sagawa N, Hasegawa M, Itoh H, et al. The role of amniotic endothelin in human pregnancy. Placenta 1994; 15: 565–575.

    Article  PubMed  CAS  Google Scholar 

  253. Sunnergen KP, Word RA, Sambrook JF, et al. Expression and regulation of endothelin precursor mRNA in avascular human amnion. Mol Cell Endocrinol 1990; 68: R7–R14.

    Article  Google Scholar 

  254. Casey ML, Word RA, MacDonald PC. Endothelin-1 gene expression and regulation of endothelin mRNA and protein biosynthesis in avascular human amnion. J Biol Chem 1991; 266: 5762–5768.

    PubMed  CAS  Google Scholar 

  255. Hasegawa M, Sagawa N, Itoh H, et al. Endothelin receptors in the human amnion, chorion laeve, decidua vera and placenta. Reprod Fertil Dev 1995; 7: 1585–1589.

    Article  PubMed  CAS  Google Scholar 

  256. Eis AW, Mitchell MD, Myatt L. Endothelin transfer and endothelin effects on water transfer in human fetal membranes. Obstet Gynecol 1992; 79: 411–415.

    Article  PubMed  CAS  Google Scholar 

  257. Chao H-S, Myers SE, Handwerker S. Endothelin inhibits basal and stimulated release of prolactin by human decidual cells. Endocrinology 1993; 133: 505–510.

    Article  PubMed  CAS  Google Scholar 

  258. Itoh H, Sagawa N, Hasegawa M, et al. Transforming growth factor-beta stimulates, and glucocorticoids and epidermal growth factor inhibit, brain natriuretic peptide secretion from cultured human amnion cells. J Clin Endocrinol Metab 1994; 79: 176–182.

    Article  PubMed  CAS  Google Scholar 

  259. Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J Biochem 1996; 119: 591–600.

    Article  PubMed  CAS  Google Scholar 

  260. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–443.

    Article  PubMed  CAS  Google Scholar 

  261. Woolf AS, Kolatsi-Joannou M, Hardman P, et al. Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J Cell Biol 1995; 128: 171–184.

    Article  PubMed  CAS  Google Scholar 

  262. Kurauchi O, Itakura A, Ando H, et al. The concentration of hepatocyte growth factor (HGF) in human amniotic fluid at second trimester: relation to fetal birth weight. Horm Metab Res 1995; 27: 335–338.

    Article  PubMed  CAS  Google Scholar 

  263. Khan N, Couper J, Goldsworthy W, et al. Relationship of hepatocyte growth factor in human umbilical vein serum to gestational age in normal pregnancies. Pediatr Res 1996; 39: 386–389.

    Article  PubMed  CAS  Google Scholar 

  264. Saito S, Sakakura S, Enomoto M, et al. Hepatocyte growth factor promotes the growth of cytotrophoblasts by the paracrine mechanism. J Biochem 1995; 117: 671–676.

    Article  PubMed  CAS  Google Scholar 

  265. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met protooncogene product. Science 1991; 251: 802–804.

    Article  PubMed  CAS  Google Scholar 

  266. Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995; 373: 702–705.

    Article  PubMed  CAS  Google Scholar 

  267. Hanssens M, Vercruysse L, Verbist L, et al. Renin-like immunoreactivity in human placenta and fetal membranes. Histochem Cell Biol 1995; 104: 435–442.

    Article  PubMed  CAS  Google Scholar 

  268. Kalenga MK, De-Hertogh R, Whitebread S, et al. Distribution of the concentrations of angiotensin II (A II), A II receptors, hPL, prolactin, and steroids in human fetal membranes. Rev Fr Gynecol Obstet 1991; 86: 585–591.

    PubMed  CAS  Google Scholar 

  269. Lundin-Schiller S, Mitchell MD. Renin increases human amnion cell prostaglandin EZ biosynthesis. J Clin Endo-crinol Metab 1991; 73: 436–440.

    Article  CAS  Google Scholar 

  270. Anderson DF, Faber JJ. Animal model for polyhydramnios. Am J Obstet Gynecol 1989; 160: 389–390.

    PubMed  CAS  Google Scholar 

  271. Stevenson KM, Lumbers ER. Effects of angiotensin II in fetal sheep and modification of its actions by indomethacin. J Physiol 1995; 487: 147–158.

    PubMed  CAS  Google Scholar 

  272. Moritz KM, Tangalakis K, Wintour EM. Renal, hormonal and cardiovascular responses to chronic angiotensin I infusion in the ovine fetus. Am J Physiol 1997; 272: R1912–R1917.

    PubMed  CAS  Google Scholar 

  273. Johnson MR, Abbas A, Nicolaides KH, et al. Distribution of relaxin between human maternal and fetal circulation and amniotic fluid. J Endocrinol 1992; 134: 313–317.

    Article  PubMed  CAS  Google Scholar 

  274. Bogic LJ, Mandel M, Bryant-Greenwood GD. Relaxin gene expression in human reproductive tissues by in situ hybridization. J Clin Endocrinol Metab 1995; 80: 130–137.

    Article  PubMed  CAS  Google Scholar 

  275. Warren WB, Silverman AJ, Cellular localization of corticotrophin releasing hormone in the human placenta, fetal membranes and decidua. Placenta 1995; 16: 147–156.

    Article  PubMed  CAS  Google Scholar 

  276. Hansen TN, Gest AL. Hydrops fetalis. In: Brace RA, Ross MG, Robillard JE, eds. Fetal and neonatal body fluids: the scientific basis for clinical practice. Ithaca, NY: Perinatology Press, 1989: 86–116.

    Google Scholar 

  277. Santolaya J, Alley D, Jaffe R, et al. Antenatal classification of hydrops fetalis. Obstet Gynecol 1992; 79: 256–259.

    PubMed  CAS  Google Scholar 

  278. Villaespesa AR, Mier SMP, Ferrer PL, et al. Nonimmunologic hydrops fetalis: an etiopathogenetic approach through the postmortem study of 59 patients. Am J Med Genet 1990; 35: 274–279.

    Article  Google Scholar 

  279. Chelliah BP, Cabatu E, Chitkara U, et al. Polyhydramnios and elevated amniotic fluid alpha-fetoprotein caused by fetal supraventricular tachycardia. J Reprod Med 1981; 26: 45–47.

    PubMed  CAS  Google Scholar 

  280. Stevens DC, Hilliard JK, Schreiner RL, et al. Supra-ventricular tachycardia with edema, ascites and hydrops in fetal sheep. Am J Obstet Gynecol 1982; 142: 316–322.

    PubMed  CAS  Google Scholar 

  281. Nimrod C, Keane P, Harder J, et al. Atrial natriuretic peptide production in association with nonimmune fetal hydrops. Am J Obstet Gynecol 1988; 159: 625–628.

    PubMed  CAS  Google Scholar 

  282. Gest AL, Hansen TN, Moise AA, et al. Atrial tachycardia causes hydrops in fetal lambs. Am J Physiol 1990; 258: H1159–H1163.

    PubMed  CAS  Google Scholar 

  283. Andres RL, Brace RA. The development of hydrops fetalis in the ovine fetus after lymphatic ligation or lymphatic excision. Am J Obstet Gynecol 1990; 162: 1331–1334.

    PubMed  CAS  Google Scholar 

  284. Nicolaides KH, Clewell WH, Mishaban RS, et al. Fetal haemoglobin measurement in the assessment of red cell isoimmunisation. Lancet 1988; 1: 1073–1075.

    Article  PubMed  CAS  Google Scholar 

  285. Moise JKJ, Rodkey LS, Saade GR, et al. An animal model for hemolytic disease of the fetus and newborn. Am J Obstet Gynecol 1995; 173: 747–753.

    Article  PubMed  Google Scholar 

  286. Blair DK, Vander Straten MC, Gest AL. Hydrops in fetal sheep from rapid induction of anemia. Pediatr Res 1994; 35: 560–564.

    Article  PubMed  CAS  Google Scholar 

  287. Silberbach M, Woods LL, Hohimer AR, et al. Role of endogenous atrial natriuretic peptide in chronic anemia in the ovine fetus: effects of a non-peptide antagonist for atrial natriuretic peptide receptor. Pediatr Res 1995; 38: 722–728.

    Article  PubMed  CAS  Google Scholar 

  288. Bayer LA, Cheung CY, Brace RA. Autonomic modulation of ovine fetal responses to atrial natriuretic factor infusion. Am J Physiol 1993; 265: R596–R601.

    PubMed  CAS  Google Scholar 

  289. Silberbach M, Anderson DF, Reller MD, et al. Effect of atrial natriuretic peptide on vascular permeation in the ovine fetus. Pediatr Res 1994; 35: 555–559.

    Article  PubMed  CAS  Google Scholar 

  290. Moise JR, Carpenter RJ, Hesketh DE. Do abnormal starling forces cause fetal hydrops in red blood cell alloimmunization? Am J Obstet Gynecol 1992; 167: 907–912.

    PubMed  Google Scholar 

  291. Nicolaides KH, Warenski JC, Rodeck CH. The relationship of fetal plasma protein concentration and hemoglobin level to the development of hydrops in rhesus isoimmunization. Am J Obstet Gynecol 1985; 341–344.

    Google Scholar 

  292. Faber JJ, Anderson DF. Model study of placental water transfer and causes of fetal water disease in sheep. Am J Physiol 1990; 258; 152: R1257–R1270.

    PubMed  CAS  Google Scholar 

  293. Jaekle RK, Sheikh AU, Berry DD, et al. Hemodynamic and hormonal responses to atrial distension in the ovine fetus. Am J Obstet Gynecol 1995; 173: 694–701.

    Article  PubMed  CAS  Google Scholar 

  294. Treadwell MC, Sherer DM, Sacks AJ, et al. Successful treatment of recurrent non-immune hydrops secondary to fetal hyperthyroidism. Obstet Gynecol 1996; 87: 838–840.

    PubMed  CAS  Google Scholar 

  295. Anandakumar C, Biswas A, Chew SSL, et al. Direct fetal therapy for hydrops secondary to congenital atrioventricular heart block. Obstet Gynecol 1996; 87: 835–837.

    PubMed  CAS  Google Scholar 

  296. Ferguson JE, Gorman JV, Bruns DE, et al. Abundant expression of parathyroid hormone-related protein in human amnion and its association with labor. Proc Natl Acad Sci USA 1992; 89: 8384–8388.

    Article  PubMed  CAS  Google Scholar 

  297. Tyson JE, Hwang P, Guyda H, et al. Studies of prolactin secretion in human pregnancy. Am J Obster Gynecol 1972; 113: 14–20.

    CAS  Google Scholar 

  298. Skinner SL, Cran EJ, Gibson R, et al. Angiotensins I and II, active and inactive renin, renin substrate, renin activity, and angiotensinase in human liquor amnii and plasma. Am J Obstet Gynecol 1975; 121: 626–630.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wintour, E.M. (1998). Water and Electrolyte Metabolism in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics